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1. probability & statistics inference

1 probability & statistics inference

1. Probability Space

1.1 definition. (Sigma algebra) Given S the sample space, a collection
of subset of S , denoted by F is called a field if

• S ∈ F
• If A ∈ F , then Ac ∈ F
• if A, B ∈ F, then A∪ B ∈ F

which means the set F is closed under operation of union and comple-
ment with S as a subset.

1.2 definition. (Probability) It is a map defined on the σ-field which is

P : F 7−→ [0, 1] (1)

1.3 definition. (Probability space) The probabilty space is a tuple (S , F , P )
where P is the probability measure

Then the discrete and continuous random variables are discussed. The
way so specify whether the r.v is discrete or not is to see whether the
r.v is in a finite set (i.e countably finite). The thing interest here is the
representation of a probability. Random variables are still defined as
usual. Let B ⊂ R. Then

PX(B) = P{s ∈ S : X(s) ∈ B} = P{X ∈ B} (2)

in a discrete case. Then the random vector is

X : S 7−→ Rd (3)

i.e X(s∗) = (1.7,2,3.4) ∈ R3. Then this is understood to be
X1(s∗)
X2(s∗)
X3(s∗)


which means the n dimensional vector consists of n random variables.
One realization on n random variables.

Then talked about independence implies 0 covariance between two
random variables while inverse is not true. Another interest thing is the
way that estimator is defined which is

1.4 definition. An estimator of a target parameter θ is a known function
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of observed random variables. It is also better to understand to be a map

θ̂ : S 7−→ R (4)

Then some criteria or evaluating an estimator are discussed.

1.5 definition. (Mean square error)

MSE = E[|̂θ− θ |2] = Var (̂θ) + Bias2(̂θ) (5)

Proof of the second equality is simple. Bias is defined as

Bias(̂θ) = E(̂θ− θ) (6)

Then converges in probability, convergence in distribution are dis-
cussed.

1.6 definition. (Consistency of an estimator) An estimator is said to be
consistent if

θ̂ −→P θ (7)

Comments: limn→∞MSE(θ̂) = 0 is stronger than consistency which is

lim
n→∞

MSE(θ̂) = 0 −→ consistency

however inverse is not necessarily true

consistency 9 lim
n→∞

MSE(θ̂)

sometimes variance goes to 0 while bias does not, which implies the
estimator is converging to the wrong theta. Then law of large number
(WLLN) and Central limit theorem are given.

1.7 proposition. The sample mean X is an consistent estimator of µ.

Then we use the mean and variance of the estimator to construct confi-
dence interval. Comments on confidence interval: The C.I is constructed
using information from estimator which is indeed a random variable.
The way we say the ”frequency” 95% will fall in this range is that we
repeat to take samples and compute the estimator θ̂ as an estimate if θ
and 95% fall in the range. that is 95% of the realization of θ̂ fall in the
range. Not quite accurate

Another new thing is that for the part of CLT, the numerator, can also be
expressed as
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2. regression

√
n(̂θ− θ0) ≈ 1

√
n

n∑
i=1

wi (8)

with wi i.i.d and E(xi) = 0which is called the asymptotic linear repre-
sentation. more to add

2. Hypothesis Testing

As usual, review the 2 types of error

• Type one error Reject H0 as it is true

• Type two error Fail to reject H0 as it is flase

Notice the action ”reject” which means you take the other option.

No new things for Hypothesis testing. Notice the essential element
mentioned in notes of Stat 305.

3. Conditional

Useful properties for conditional expectation:

• E(a1Y1 + a2Y2|X) = a1E(Y2) + a2E(Y2)

• If X and Y are independent then E(Y | X) = E(Y)

• E(Yg(X) | X) = g(X)E(Y | X)

• EX[EY(Y | X)] = E(Y)

The last one is the iterated expectation. Most important one. It is related
an interpreted with ”information”. When there are more than one r.v in
the condition, only the one with less information survive for example

E[E(Y | cos(x)) | X] = E(Y | cos(X))

1.8 theorem.

E[(Y − g(X))2] ≥ E[(Y − E[Y | X])2] (9)

proof on class note 09-27.

2 regression

Mostly talk about the linear regression model. The general form

Yi = β0 + β1Xi + ui (10)

New thing is the terminology exogeneous.
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2.1 definition. We say Xi is an exogeneous variable if

Cov(ui , Xi) = 0 (11)

2.2 definition. (Identify) Given the joint distribution of random vari-
ables leading to a unique determination of the value of parameter, then
we say the parameters are identified.Notice the identification can not
include any r.v that are not observable. For example if the condition
cE(ui | Xi) does not hold, then the identification process will be

Cov(Yi , Xi) = β1Var(Xi) + Cov(ui , Xi)

then βa is not identifiable.

Assumptions for the model (10) in order to have identified (β0, β1):

• E(ui | xi) = 0 this leads to E(ui) = 0 and Cov(u1, xi) = 0 The E(ui) =
0 is simply from iteration expectation. The second one is from

Cov(ui , xi) = E(xiui) − E(xi)E(ui) = E(xiui)

then appeal to iterated expectation

E(xiui) = E(E(xiui | xi)) = E(xiE(ui | xi)) = 0

• Var(xi) > 0. No multicolinerality. (i.e if Var(x) = 0 then it becomes
a constant regressor then it can not be specified between β0).

Then start to identify those β parameter. This is a way to identify the
parameter.

• β1: Try the covariacne between Yi and Xi

Cov(Yi , Xi) = Cov(β0 + β1Xi + ui , Xi)

= Cov(β0, Xi) + Cov(β1Xi , Xi) + Cov(ui , Xi)

= β1Var(Xi)

so that is

β1 =
Cov(X1, Yi)

Var(Xi)

this is the result that β1 is Idnetified. Recall that the OLS method
result in the estimator of β1 to be Ĉov(X1, Yi)/ V̂ar(Xi) which now
make sence. This is a fabulous example of being identifiable, which
is, given model (the joint distribution) and assumptions, β is identi-
fied.
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2. regression

• β0: Instead of using covriance, simply take expectation on both
sides

β0 = E(Yi) − β1E(Xi)

so β0 is identified as well.

Then construct estimator for those parametor.

• Sample Analogue Estimator It should be using sample mean to
replace the true expectation (see notes). It can be applied to wide
range of model not only regression model where OLS only works.
So the estimator is

β̂1 =
Ĉov(X1, Yi)

V̂ar(Xi)

where

Ĉov(Xi , Yi) =
1
n

n∑
j=1

(Yi − Ȳ)(Xi − X̄)

V̂ar(Xi) =
1
n

n∑
j=1

(Xi − X̄)2

The error of β̂1 involved is

β̂1 = β1 +
Ĉov(ui , Xi)

V̂ar(Xi)︸        ︷︷        ︸
Error

Proof. Consider Ĉov(Yi , Xi). We have

Ĉov(Yi , Xi) = Ĉov(β0 + β1Xi + µi , Xi)

= 0 + β1V̂ar(Xi) + Ĉov(µi , Xi)

which implies

β̂1 =
Ĉov(ui , Xi)

V̂ar(Xi)
+ β1

2.3 fact. β̂1 is unbiased estimator for β1.

Proof.

E (̂β1 − β1) = E
(

Ĉov(ui , Xi)

V̂ar(Xi)︸        ︷︷        ︸
call it A

)

6



let X = (X1, X2, ..., Xn)′, then

= EX

(
EA

(
A |X

))
then by the fact that E(Yg(X) | X) = g(X)E(Y | X) we have

= EX

(
1

V̂ar(xi)
E
(
Ĉov(u1, xi) |X

))
then consider the Ĉov(u1, xi) we have

Ĉov(u1, xi) =
1
n

n∑
i=1

(xi − x̄)(ui − µ̄)

=
1
n

n∑
i=1

ui(xi − x̄) − 1
n

n∑
i=1

µ̄(xi − x̄)

︸            ︷︷            ︸
=0

=
1
n

n∑
i=1

ui(xi − x̄)

then we have

E(Ĉov(ui , xi) |X) =
1
n
E(

n∑
i=1

ui(xi − x̄) |X)

=
1
n

n∑
i=1

E(ui(xi − x̄) |X)

again apply the property of E(Yg(X) | X) = g(X)E(Y | X) we have

=
1
n

n∑
i=1

(xi − x̄)E(ui |X)︸   ︷︷   ︸
=0

= 0

Notice the last under brace we have E(ui |X) to be zero. This can be
thought that

E(ui |X) = E(ui | Xi)

since for any other X, they do not provide additional information
for ui .

• OLS The result if exactly the same as sample analogue.

Then the generalized slysky lemma is introduced.

2.4 theorem. Let Xn →d X and Yn →p c. Then
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2. regression

g(Xn, Yn)→d g(X, c) (12)

Notice when apply this theorem, a.s and p are all stronger than d. So
when these occurs, slusky lemma also works.

2.5 fact. (Consistency of β̂1) β̂1 −→p β1 which is

lim
n→∞

P (|̂β1 − β| < ε) = 1 (13)

Proof. This is same as showing the error term converges in probability
to 0. Thus

β̂1 − β1 =
Ĉov(ui , Xi)

V̂ar(Xi)
=

1/n
∑

(Xi − x)(ui − u)
1/n

∑
(xi − x)2

then we call two facts, which are also easy to check, which are

• Sample variance converges in probability to population variance

• Sample covariance converges in probability to population co-
variance

which are all obtained by Slysky’s lemma. Then we have

Ĉov(ui , Xi)

V̂ar(Xi)
→p

Cov(ui , Yi)
Var(Xi)

= 0

by our assumption. So β̂1 →p .β1. Consistency proved.

Then given one more assumption, the homostet. E(u2
i | Xi) = σ2 we are

able to show that

√
n(̂β1 − β1)→d N(0, v2 =

σ2

Var(Xi)
)

where we can show v̂2 →p v2 by sample analog estimator. Finally we
have √

n(̂β1 − β1)
1
v
→d N(0, 1)

Proof. Aim to show the convergence of
√
n(̂β1 − β1). Start with this ex-

pression we have

√
n(̂β1 − β1) =

√
nĈov(ui , Xi)

V̂ar(Xi)
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The denominator is still converges in probability to the population
variance. We focus on the numerator.

√
nĈov(ui , Xi) =

1
√
n

∑
ui(xi − x)

=
1
√
n

∑
ui(xi − E(Xi)) +

1
√
n

∑
ui(E(Xi) − x)︸                     ︷︷                     ︸

by Slysky’s lemma −→d0

the second term can be thought as∑
ui(E(Xi) − x) =

(
1
√
n

∑
ui

)
︸        ︷︷        ︸

CLT−→d N(0,var(ui ))

(
E(Xi) − x

)
︸      ︷︷      ︸
WLLN −→p0

−→d or p 0

where the first part is base on out assumption that the E(ui) = 0 and
the converges in p or d is because converges in d to a constant implies
converges in p to the constant. The for the first part we observe that

E
(
ui(xi − E(Xi)

)
= E

(
uixi

)
− E(ui)E(xi) = Cov(ui , xi) = 0

again by our assumption. So by CLT, we have

1
√
n

∑
ui(xi − E(Xi)) −→d N(0, Var(ui(xi − E(Xi)))

Mon comment: Obtaining an asymptotic normal by CLT from a series
is important especially when other asymptotic behaviour can not be
obtained. So together we have

√
nĈov(ui , Xi) −→d N

(
0, Var

(
ui(xi − E(Xi)

))
Since the variance involves ui , we apply our new assumption here

Var
(
ui(xi − E(Xi)

)
= E

(
u2
i (Xi − E(Xi))

2)
)
− 0

= E
{
E
(
u2
i (Xi − E(Xi))

2
∣∣∣ Xi

)}
= E

{
(Xi − E(Xi))

2 E
(
u2
i

∣∣∣ Xi

)
︸     ︷︷     ︸

=σ2

}
= σ2E

(
(Xi − E(Xi))

2
)

= σ2Var(Xi)

Iterated expectation is extremely useful when given assumption is in
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2. regression

conditional form. Finally integrate with the denominator

√
n(̂β1 − β1) =

√
nĈov(ui , Xi)

V̂ar(Xi)
−→d N

(
0,

σ2

Var(Xi)︸    ︷︷    ︸
Call it v2

)

Then Consider the sample analog estimator of the variance which is

v̂2 =
σ̂2

V̂ar(X1)
−→d

σ2

Var(Xi)

by WLLN and slutsky’s lemma. Then again by slutsky’s lemma
√
n(̂β1 − β1)

v̂
−→d N(0, 1)

where v2 = σ2/Var(Xi). Notice the last step, the N(0, v2) is an asymp-
totic result, so we are not able to simply do algebra to obtain the
standard normal distribution, we have to appeal to LLN and slutsky’s
lemma.

So this implies our confidence interval is exactly a asymptotic result.

2.1 Bivariate Linear Regression

Linear model with two variables. Form

Yi = β0 + β1Xi + β2Zi + µi (14)

Assumption, analogy from univariate model

• E(ui | Xi , Zi) = 0

This condition implies that

E(ui) = 0(by iterated expectation)

Cov(ui , Xi) = Cov(ui , Zi) = 0

the second equality is by

E(uiXi) = E(E(ui | Xi , Zi)︸         ︷︷         ︸
=0

Xi)

same for Zi .

• Var(Xi) > 0, Var(Zi) > 0

• Xi and Zi are not perfectly correlated.
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2.1. bivariate linear regression

Then we identify the parameter in the same way as we do in univariate
regression which is

Cov(Yi , Xi) = β1Var(Xi) + β2Cov(Zi , Xi) (15)

Cov(Yi , Zi) = β1Cov(Xi , Zi) + β2Var(Zi) (16)

Then two equations, two target parameters, we eventually find

β1 =
β̃1 − ρZi ,Xi

Cov(Yi ,Zi )√
Var(Zi )Var(Xi )

1 − ρ2
Zi ,Xi

(17)

where

β̃1 =
Cov(Yi , Xi)

Var(X)
, ρZi ,Xi

=
Cov(Zi , Xi)√

Var(Zi)Var(Xi)

so the above reaffirm that if Xi and Zi are perfectly linearly correlated, the
the model (parameters) are not able to be identified. This is equivalently
shown as

• if ρ2
Z,X = 1, then β1 is not identified, which is the case of perfectly

linearly correlated.

• if ρZ,X = 0, then β = β̃1 which is the case of perfectly non-linearly
correlated. Where β̃1 is regressing Yi on Xi , with Zi omitted. β1 is
regressing on both Xi and Zi . That is, if X and Z are perfectly non-
linearly correlated, then the result of its corresponding coefficient
is the same as regressing on them respectively in univariate linear
model.

Also by symmetry, we can figure our β2 in the same manner.

After identification, look for estimator. The general sample analogue esti-
mator is still by replacing whatever we can by its sample counterpart.

Estimator

Assume the true model is the bi-variate model. We still using the sample
analogy estimator of the univariate model. The case is, true model is

Yi = β0 + β1Xi + β0Zi + ui

while we mis-specified the model to be

YI = γ0 + γ1Xi + vi

(i.e we actually regressing on Xi solely). Then we try the sample analogy
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2. regression

estimator of γ1 which give

γ̂1 =
Ĉov(Yi , Xi)

V̂ar(Xi)
=

Ĉov(

the true model︷                     ︸︸                     ︷
β0 + β1Xi + β0Zi + ui , Xi)

V̂ar(Xi)

= β1 + β2
Ĉov(Zi , Xi)

V̂ar(Xi)

we observe by WLLN and Slusky’s lemma

γ̂1 = β1 + β2
Ĉov(Zi , Xi)

V̂ar(Xi)
−→p β1 + β2

Cov(Zi , Xi)
Var(Xi)︸            ︷︷            ︸

Asymptotic Bias

(18)

More specifically we call this the Omitted variable bias since this kind of
bias is caused by omitting one variable. The above observation indicates, and
reaffirms, that as long as the Zi and Xi are not perfectly linearly correlated,
the sample analogy estimator in uni-variate model will converges to some
point away from true parameter in bivariate model. If asymptotic bias is not
zero, then the estimator cannot be consistent, which is

• Asymtotic bias = 0 6 =⇒ Consistency

• Consistency =⇒ Asymptotic bias = 0

2.6 definition. The asymptotic bias is defined as

plim
n→∞

θ̂− θ0 (19)

where plimn→∞ θ̂ = γ if θ̂→p γ. The θ0 is target parameter.

2.7 definition. (partial effect) Let m(x, z) = E(Xi = x | Zi = z) = β0 +β1x+β2xz.
Then the partial effect is defined as

∂m
∂x

(x, z)

and the average partial effect is

E
(
∂m
∂x

(x, z)
)

which is the average derivative of x.
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2.2. multivariate regression

2.2 Multivariate Regression

Assume we have more than 2 random variable. The assumption is still the
same as the uni and bivariate model which are

• E(ui | Xi , Zi , ...) = 0

• E(ui) which leads to Cov(ui , Xi) = Cov(ui , Zi) = ... = 0

Then comes to estimation. OLS is applied. While the interest thing here is the
way that OLS is motivated, that is directly from the identification results. So
the results is the same as minimizing

min
b0,b1,b2

E
(
(Yi − b0 − b1Xi − b2Zi)

2
)

(20)

then the sample counterpart becomes

min
b0,b1,b2

1
n

n∑
i=1

(
(Yi − b0 − b1Xi − b2Zi)

2
)

guaranteed by the WLLN and Slusky’s lemma. Go along the same way as
before, we need second moment assumption while in this case we assume

E
(
u2
i | Xi , Zi

)
which is the conditional hetero assumption. Notice this is stronger than
E(u2

i | Xi) = σ2. Then in the bivariate model (14), we have

√
n(̂β1 − β1) −→d N(0, v2), v2 =

1

1 − ρ2
Z,X

∗ σ2

Var(Xi)
(21)

Then consider the robustness and efficiency.

2.8 example. Consider the uni and bivariate model which are

Yi = β0 + β1Xi + ui

Yi = β0 + β1Xi + β2Zi + ui

where the univariate one is the true model. Using the bivariate model is still
valid. This is the robustness. The second model is a larger model than the
first one, so the univariate model can be considered as a special case of the
second model. Then if looking at the asymptotic behaviour we will find that
the second one has a larger asymptotic variance.

3 causality, endogenity

If we only care about prediction then causality is not a problem since we don’t
care.
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3. causality, endogenity

3.1 definition. (Best linear predictor) The best linear predictor of regression
coefficient is the ones that minimize the MSE

min
α,β

E(Y − α − βX)2

where the model is Y = α + βX + u

3.2 definition. (Endogenity) This is suggested from Cov(ui , Xi) , 0

The problem caused by Endogenity is that consider uni-variate model then
we get

β̃ −→p
Cov(Yi,Xi)

Var(Xi)
= β1 +

Cov(ui,Xi)
Var(Xi)

When the regression is ran and significance is shown. However you are not able
to separate which part contributes to it. In extreme case, say β = 0 however
test still pass.
Now we consider the case that Cov(ui , Xi) , 0 which is endogeneity. Consider
univariate model with non-zero covariance between ui and Xi (also clearly
the E(ui | Xi) , 0) which is

Yi = β̃0 + β̃1Xi + ũi

. We still identify the parameter in the same was as before. However now the
identified parameter becomes

β̃1 =
Cov(Yi,Xi)

Var(Xi)
+

Cov(ui,Xi)
Var(Xi)

= β1 +
Cov(ui,Xi)

Var(Xi)

and the sample analogy estimator becomes

̂̃
β1 =

̂Cov(Yi,Xi)

V̂ar(Xi)
+

̂Cov(ui,Xi)

V̂ar(Xi)
−→p β1 +

Cov(ui,Xi)
Var(Xi)︸        ︷︷        ︸

Endogenity Biase

easy to see the convergence. Notice the first part converges to β1. This β1 is
the one under the case that E(ui | Xi) = 0 which does not exists. So this means

if you still use the original estimator which is
̂Cov(Yi,Xi)

V̂ar(Xi)
then as you increases

n, the sample size, the estimator converges to β1 but not β̃1 and the remaining
part is bias.

1. Source of Endogeneity

• Omitted Variables Bias cause by laking of variable. Consider true
model to be

Yi = β0 + β1Xi + β2Zi + ui

where Cov(Xi,ui) = Cov(Zi,ui) = 0 while the model we approaches
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in practice is
Yi = β0 + β1Xi + vi︸︷︷︸

=β2Zi+ui

By doing the same procedures as before we can obtain the bias by

β̂1 =
̂Cov(Yi,Xi)

V̂ar(Xi)
−→p β1 + β2

Cov(Xi,Zi)
Var(Xi)

• Measurable Error Bias

The situation is assume the true model is

Yi = β0 + β1X∗i + ui

= β0 + β1Xi − β1εi + ui

while the observable, practical model is

Yi = β0 + β1 Xi︸︷︷︸
Xi=X∗i+εi

+vi

Then the measurable error bias becomes

Bias(β̂1) =
Cov(vi,Xi)

Var(Xi)

Notice comparing the true and practical model, vi actually equals
−β1εi + ui . So

Cov(Xi, vi) = Cov(X*
i + εi, -β1εi + ui)

= −β1 Cov(X*
i , εi)−β1 Var(εi) + Cov(εi,ui)

(22)

Then we assume pure measurement error which are

– Cov(εi,X*
i ) = 0

– Cov(εi,ui) = 0

So finally Cov(Xi, vi) = −β1 Var(εi) and by substituting Var(Xi) =
Var(X*

i ) + Var(εi)

β̂1 −→p β1 − β1
Var(εi)
Var(Xi)︸      ︷︷      ︸
Bias

= β1
Var(X*

i )

Var(X*
i ) + Var(εi)︸               ︷︷               ︸
∈(0,1)

So, conclusion, the measurement error only scale down the target
parameter. If the variance of ε is so big, then it pulls down the effect
to almost zero. So the significance test may not past due the the
measurement error. It reduce the power of the test. Not to much of
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3. causality, endogenity

this we can do with this.

A question raised from lecture. Can we check ̂Cov(ûi,Xi) to check
endoginity? No. Since ûi = Yi − β̂0 − β̂1Xi and thus by design

̂Cov(ûi,Xi) = 0 always. There is no way we can check endoginity.
We may need to search for new data sources.

• Simultaneous Causality Bias Make up

3.1 Method to deal with endoginity

This course mainly talk about instrument variable (IV), a ’tool variable’.
Consider univariate model again with endoginity which is

Yi = β0 + β1Xi + ui Cov(ui,Xi) , 0

The IV need to satisfy two conditions:

• Validity, IV exogeneity condition Cov(ui,Zi) = 0

• Relevance, IV relevancy condition Cov(Xi,Zi) , 0

It is easy to construct such an IV. This two condition leads to identifica-
tion of β1

Cov(Zi,Yi) = β1 Cov(Zi,Xi) =⇒ β1 =
Cov(Zi,Yi)
Cov(Zi,Xi)

(23)

Includes Zi in the model does not help identification and then cause a
new parameter to identify. The procedure is as follows.

• 1st stage regression We first regression Xi on Zi by simple linear
regression

Xi = π0 + π1Zi + vi (24)

where the basic assumptions for identification (consistency) are
still hold. Then we have

X̂i = π̂0 + π̂1Zi (25)

with

π̂1 =
̂Cov(Xi,Zi)

V̂ar(Zi)

• 2nd stage regression Then we regress on the purified X which is
X̂i

Yi = β0 + β1X̂i + ui
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3.1. method to deal with endoginity

the sample counterpart is

Ŷi = β̂0 + β̂1X̂i

where

β̂1 =
̂Cov(Yi, X̂i)

V̂ar(X̂i)

=
̂Cov(Yi, π̂0 + π̂1Zi)

π̂2
1V̂ar(Ẑi)

=
̂Cov(Yi,Zi)

V̂ar(Zi)

V̂ar(Zi)
̂Cov(Xi,Zi)

=
̂Cov(Yi,Zi)
̂Cov(Xi,Zi)

−→p β1 (from 23)

Notice in the 1st stage, we are NOT assuming any causal relation at
all. It is pure auxiliary.

Notice that

β̂1 =
̂Cov(Yi,Zi)
̂Cov(Xi,Zi)

=
̂Cov(β0 + β1Xi + ui,Zi)
̂Cov(Xi,Zi)

= β1 +
̂Cov(ui,Zi)
̂Cov(Xi,Zi)

Notice that the true model is still Yi = β0 + β1Xi + ui . It is true but with
endogeinity. Then

√
n(β̂1 − β1) =

√
n

̂Cov(ui,Zi)
̂Cov(Xi,Zi)

−→d N(0, v2)

then

√
n ̂Cov(ui,Zi) =

1
√
n

n∑
i=1

ui
(
Zi − Z̄i

)

=
1
√
n

n∑
i=1

ui (Zi − E (Zi))︸                       ︷︷                       ︸
CLT→d N(0,Var(ui(Zi-E[Zi])))

+
( 1
√
n

n∑
i=1

ui
)

︸        ︷︷        ︸
CLT→ 0

(
E (Zi) − Z̄

)
︸        ︷︷        ︸

LLN→ 0

the denominator converges in p to Cov(Xi,Zi) which eventually generate
the limit distribution.

Comparing LS and 2SLS Further more to get the limit distribution more
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3. causality, endogenity

neat we assume E(u2
i | Xi , Zi) = σ2. We have seen two results

√
n(̂β2SLS − β1) −→d N(0,

Var(ui(Zi-E[Zi]))

Cov(Xi,Zi)
2 =

σ2 Var(Zi)

Cov(Xi,Zi)
2 )

√
n(̂βLS − β1) −→d N(0,

σ2

Var(Xi)
)

where the 2SLS has a larger SE by the following inequality

3.3 theorem. (Cauchy-Schwory Inequality) Given two random variable Xi and
Yi

Var(X) Var(Y) ≥ Cov(X,Y)2 (26)

which suggests that using IV will increase the SE so then lose power.

As we goes to the model with more than one endogenous variables, we
need more IV to achieve more equations for identification by using Cov(ui,Xj).
So we need at least same number of IV as the number of endogenous for
identification purpose. Lets set up the model to be

Yi = β0 +
k∑

j=1

βjXij +
r∑

j=k+1

βjXij + ui

let the first k to be endogenous and r − k exogenous r.v.

The case can also be over identified which means the number of IV is greater
than the number of exogenous. When add more IV, there will be more restric-
tion which is the Cov(IV,ui) = 0. With more IV which leads to a smaller SE
and higher power.

3.2 Checking the Validity of Instrumental Variable

We are going to test whether the two assumptions of IV, the relevancy and
validity of the IV.

Relevancy

Let assume the whole model to be

Yi = β0 + β1Xi + β2W1i + ... + β1+rWri + ui (27)

where Xi is endogenous and the remaining are exogenous. Then our first
stage regression becomes

Xi = π0 +
m∑
j=1

πjZji +
r∑

q=1

πm+qWqi + vi (28)

18



3.2. checking the validity of instrumental variable

Notice we includes all other exogenous regressors in the first stage regression.
Then we will test on the following

H0 : π1 = ... = πm = 0

Ha : At least one equality above is wrong
(29)

We apply F − test here. Notice in practice, the programming is in default
testing on

H0 : π1 = ... = πm = πm+1 = ... = πmr
= 0

This includes all the coefficient of the exogenous variables. This is WRONG.
Logic is this: We are happy to see the null to be rejected since this confirms
our guess that at least one of the instrument variables is relevant. However,
this can be leaded by the non-zero of those coefficients of exogenous r.v which
actually indicates irrelevancy of any of the IV.

Weak instrument This is caused by the weak correlation between the IV and
endogenous r.v. Usually this leads to the problem that the asymptotically
distribution of

√
n(̂β − β) does not approximate normal distribution. So the

asymptotic results is misleading.

Validity

Test Cov(ui,Zi) = 0 or not. First idea on doing ̂Cov(̂ui,Zi) = 0 not works.
The reason is the same as the discussion on page 15. In short, the parameter is
obtained by the same setting so they are numerically identity. This means the
following test

H0 : Cov(Zi,ui) = 0

Ha : Cov(Zi,ui) , 0

where Yi = β0 + β1Xi + ui and Xi = π0 + π1Zi + vi is not testable. So

3.4 fact. For IV validity test, when our case is just-identified, the test is not
testable. In order to be testable, we need the case to be over-identified.

Let consider the over identified case. Let

Yi = β0 + β1Xi + ui

Xi = π0 + π1Zi1 + π2Zi2 + vi

which test
H0 : Cov(Zi1,ui) = Cov(Zi2,ui) = 0

Ha :At least one equality above is not true

Go to notes 5 for the J-test and its construction. make up later
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4. panel model

4 panel model

Panel data or time panel data, is that data observed in a series of time and cut
at a time point so you get a panel data. If the time length is very large so you
get a long panel which is usually dealt by time series analysis (i.e t is large)
and the short panel is your sample size n is large. Also we have the so-called
rotational cross section data which can be thought as a subset of panel data
that each column are drawn randomly from a the column of panel data. This
means horizontally along the time dimension, the data is not from the same
household while the panel data make sure that horizontal dimension are from
the same household so calls that with-in group, correlated and vertically
called between group and i.i.d.

We should notice that the usual asymptotic analysis may be not applicable
here. Regular method and theorem usually need n get to infinity while we have
another time dimension here. So we should be careful about which dimension
you are applying the asymototic analysis on. In this course, we deal with panel
data.

4.1 Linear Panel Regression with Fixed Effect

Assume panel model. Let i indexing the i th sample and t indexing time at t.
The model becomes

Yit = Xitβ + αi + uit (30)

where:

• β is the causal effect of Xit as usual and observable

• Yit also observable

• αi is the fixed effect, unobservable, time-INvariant heterg. The fixed
effect αi are potentially correlated with Xit and this generate endoginity.

Endoginity here can be removed without using IV thanks to first, αi is
time-invariant (i.e omitted variable is time invariant) and second, Xit is time
varying. We assume, for identification

• E[uit | Xi1, Xi2, ...., XiT] = 0 for ∀i, T

•
T∑
t=1

E[(Xit − 1
T

T∑
s=1

Xis)2] > 0 which means Xit should be time-varying.

Notice the term in the second condition is the within group transformation

4.1 definition. (Within group transformation) This is defined for horizontal
observation which is for the same household at different time
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4.1. linear panel regression with fixed effect

X∗it = Xit −
1
T

T∑
s=1

Xis = Xit − XiT (31)

actually this transformation center the Then we identify the β by doing
within group transformation for Yit

1
T

T∑
t=1

Yit =

 1
T

T∑
t=1

Xit

 β + αi +
1
T

T∑
t=1

uit (32)

then (30) − (32) we get
Y∗it = X∗itβ + u∗it (33)

Notice the within group transformation moves away the fixed effect. Then
multiply X∗it on both sides then take expectation

E[Y∗itX
∗
it] = βE[X∗it]

2 + E[u∗itX
∗
it]︸    ︷︷    ︸

=0

then next step we want to use as much data available as possible so

T∑
t=1

E[Y∗itX
∗
it] = β

T∑
t=1

E[X∗it]
2

so finally

β =

T∑
t=1

E[Y∗itX
∗
it]

T∑
t=1

E[X∗it]
2

(34)

The correlation between We are not assuming the distribution of Xit are the
same across all t.

Then if we try the sample analogue estimator we have

β̂ =

1
n

n∑
i=1

T∑
t=1

Y∗itX
∗
it

1
n

n∑
i=1

T∑
t=1

(
X∗it

)2

= β +

1
n

n∑
i=1

T∑
t=1

u∗itX
∗
it

1
n

n∑
i=1

T∑
t=1

(
X∗it

)2

(35)
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4. panel model

Notice from the first line we can think of Y∗itX
∗
it as a function or trans-

formation of X∗it so they are still i.i.d and then the estimator is consistent.
The asymptotic theory is apply in a sense that time t is fixed and n goes to
infinity. Very important. To make the above discussion more clear, lets take
the numerator as an example.

1
n

n∑
i=1

T∑
t=1

(
X∗it

)2

Our objective dataset is a short panel which means the time T is not going to
be large. So for each i, household, the gray part is fixed given a T. What goes
to infinity for asymptotic analysis is the n, number of household. so

1
n

n∑
i=1

T∑
t=1

(
X∗it

)2
−→p E[

T∑
t=1

(X∗it)
2]

Similar for the numerator. Then we can derive the asymptotic distribution

√
n(̂β − β) =

1√
n

n∑
i=1

T∑
t=1

u∗itX
∗
it

1
n

n∑
i=1

T∑
t=1

(
X∗it

)2

the numerator
1
√
n

n∑
i=1

T∑
t=1

u∗itX
∗
it −→d N(0, v2)

where

v2 =
Var(

T∑
t=1

u*
itXit)(

E
[

I∑
t=1

(
x∗it

)2
])2 =

E[
T∑
t=1

(u∗itXit)2](
E
[

I∑
t=1

(
x∗it

)2
])2

the numerator converges to constant. Then we introduce some more constrain
to simplify the expression. Analogue to linear model

• E[u2
it | Xi1, ..., XiT] = σ2

• E[uituis | Xi1, ..., XiT] = 0, ∀t , s

We can logically knows, even without proof, that the transformed version
of the above two assumption also works which is

• E[(u∗it)
2 | X∗i1, ..., X∗iT] = σ2

• E[u∗itu
∗
is | X

∗
i1, ..., X∗iT] = 0, ∀t , s
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4.2. fixed effect multiple regression

Then we can simplify the numerator

E


 T∑
t=1

u∗itX
∗
it


2 =

T∑
s=1

T∑
t=1

u∗itu
∗
isX
∗
itX
∗
is

=
T∑
s=1

T∑
t=1

E
(
E
(
u∗itu

∗
is | Xi1, Xi2 . . . .Xit

)
· X∗itX

∗
is

)

=
T∑
t=1

E(E
(
u+2
it | Xi1, Xi2 . . . , Xit

))
︸                           ︷︷                           ︸

=σ2

X2
it

+
∑
t,s

T∑
s=1

E
(
E
(
u∗itu

∗
is | Xi1, · · · , Xit

)
X∗itX

∗
is

)
︸                                    ︷︷                                    ︸

=0

= σ2
I∑

i=1

[
E
[(

X∗it
)2

]
so finally

v2 =
σ2

T∑
t=1

E[(X∗it)
2]

4.2 Fixed Effect Multiple Regression

Add one more variable

Yit = β1Xit + β2Wit + αi + uit

• E[uit | Xi1, Xi2, ...., XiT, Wi1, Wi2, ...., WiT] = 0 for ∀i, T

•
T∑
t=1

E[(X∗it)
2] > 0,

T∑
t=1

E[(W∗it)
2] > 0 there is no multicolinerality

then the way to identify is

T∑
t=1

E
(
Y∗itX

∗
it

)
= β1

T∑
t=1

E
[(

X∗it
)2

]
+ β2

T∑
t=1

E
(
X∗itW

∗
it

)
T∑
t=1

E
(
Y∗itW

∗
it

)
= β1

T∑
t=1

E
[(

W∗itX
∗
it

)]
+ β2

T∑
t=1

E
(
W∗it

)2

So the meaning of the second condition is to
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4. panel model

4.3 First differencing

This is another way to transform the data. This is differencing between two
consecutive time period which is

∆Yit = β∆Xit + ∆αi + ∆uit

where the delta means ·t − ·t−1 for t = 1, 2, ..., T. Then identify β same as before

β1 =

T∑
t=1

E[∆Yit∆Xit]

T∑
t=1

E[∆X2
it]

and sample analogue counterpart. The assumptions

• E (∆uit | xi1, . . . , XiT) = 0

•
T∑
t=2

E (∆xit)
2 > 0

Notice the first condition allows the E(uit | Xi1, ...., XiT) = vi . Then with
these assumptions the first differencing is actually equivalent to within group
transformation but DIFFERENT variance. Then

√
n
(
β̂FD − β

)
=

1√
n

n∑
n=1

T∑
t=2

∆uit∆Xit

1
n

n∑
i=1

T∑
t=2

(∆Xit)
2

and the denominator by WLLN, the numerator by CLT get

v2 =
Var

(
T∑
t=2

∆Xit∆Uit

)
(

T∑
t=2

E
(
(∆Xit)

2
))2

read the note about Endogenous Regressor

4.4 Fixed Effect with Lagged Dependent Variables (Dynamic Panel Model)

The model is divided into observable and observable part

Yit = Xitβ + εit

where εit = αi + uit. Assumption

E(uit | Xi1, ..., XiT, αi)

E(uituis | Xi1, ..., XiT, αi) = 0 ∀t , s
(36)
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4.4. fixed effect with lagged dependent variables (dynamic panel

model)

then these two gives

• E(εitεis | Xi1, ..., XiT, αi) = α2
i

The lagged is actually defined to be

Yit = Xitβ + εit , εit = β2Yit−1 + α + uit

that is we assume the serial correlation comes from two sources, the state
dependence and unobserved heterogeneity (i.eαi). Then our model becomes

Yit = β1Xit + β2Yit−1 + αi + uit

Y∗it = β1X∗it + β2Y∗it−1 + α∗i + u∗it

We still can have the assumption of E(uit | Xi0, ..., XiT). However if we still
what to identify β as before we have to have validity of

E(u∗itY
∗
it−1) = 0

this is not valid actually since uit involves all those ui1, .., uiT and Y∗it−1 involves
all those ui1, ..., uit−1. So overlapping makes within group transformation NOT
WORKS. By the same idea, first differencing also fails due to overlapping. Thus
we need instrument variable here.

The idea is considering the two sources of serial correlation, we want to
set up a model to include these two cases at the same time. Still consider FD.
This will wipe out the αi from the first place (i.e FD removes all time invariant
variables). So far our equation becomes

∆Yit = β1∆Xit + β2∆Yit−1 + ∆uit

so it turns out the lagged term is endogeneous: First we still assume (36) while
add the lagged term in to the condition. So we want to check Cov(Yit-1,uit) is
0 or not. This is

E(∆uit ,∆Yit−1) = E (uitYit−1) − E (uitYit−2) − E (uit−1Yit−1) + E((uit−1Yit−2)

notice all terms are the production of current error term uit and past YiT, T < t.
We can show this is zero:

E (uit · Yit−1) = E (uit (β1xit + β2Yit−2 + αi + uit−2))

= β1 E (uitxit)︸    ︷︷    ︸
=0

+β2E(uitYit−2) + E (uituit−2)︸       ︷︷       ︸
=0

= β2E (uitYit−2)

= · · · · · · = E (uitYi0) = 0
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5. binary choice model

so we have
E(∆uit ,∆Yit−1) = E (uit−1Yit−1)

Thus we need instrument variable to remove the exgeneounity. Fortunately,
for the dynamic model we use, there exists natural IV so no need to search for
additional resources. This can be any lagged Y. Try

Cov(∆uit,Yit-2)

By similar idea above, this is zero and then we can identify the parameter by

cov (∆Yit ,∆Xit) = β1 var (∆Xit) + β2 cov (∆Yit−1,∆Xit)

cov (∆Yit , Yit−2) = β1 cov (∆Xit , Yit−2) + β2 cov(∆Yit−1, Yi−2)

Notice that expectation also works here while covariance also works. Other
candidates of IV can be Yi,t−2,∆Yi,t−2, Yi,t−3,∆Yi,t−3... as long as it does not
involves the uit−1. Always remember the two condition that IV should satisfy:
relevancy and exogenous. When we say good quality IV, we are saying the
stronger correlation with regressor. So we can rank all those IV by its covari-
ance with the endogenous regressor. In this case, the one that more close in
time has stronger correlation.

5 binary choice model

Exactly a classification model. Binary classification. This is

Yi = 111{β0 + β1Xi ≥ ui} =

1, if β0 + β1Xi ≥ ui
0, otherwise

This model is motivated by random utility model from Mcfadden.

Model Setup

Choice is binary either 1 or 0 (i.e buy or not to buy, yes or no). We assume
the utility of chose 1 and 0 respectively as

Option 1 : Ui(1) = γ01 + γ11Xi + vi1

Option 0 : Ui(0) = γ00 + γ10Xi + vi0

Individual will chose option 1 if its utility is greater than option 0. So we take
difference of the two utility and get

Yi = 111{γ01 − γ00 + (γ11 − γ01)Xi ≥ vi1 − vi0}

= 111{β0 + β1Xi ≥ ui}

In research, we usually start with strong assumptions and then see if we can
relax it when doing identification.

Assumptions
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• Conditional Distribution of ui given Xi Assume

f (ui | Xi) = N(0, 1)

this actually implies the independence how? between Xi and ui . The
uncorrelation is not very useful in non-linear model. So we need this
Independence. This assumption actually packed up three assumption
together, one further by another

– ui and Xi are independent

– ui ∼ N(µ, σ2)

– µ = 0, σ = 1 otherwie not identifiable.

• Var(Xi) > 0

Identification
We start with the conditional choice probability (CCP).

P(Yi = 1 | Xi = x) = P(β0 + β1Xi ≥ ui | Xi = x)

= P(β0 + β1x ≥ ui | Xi = x)

= P(ui ≤ t | Xi = x) where t = β0 + β1x & independence

= Φ(t) = Φ(β0 + β1Xi) Recall the first assumption

Then since CDF for standard normal is strictly increasing, so bijection and so

Φ−1
{
P(Yi = 1 | Xi = x)

}
= β0 + β1x

and so does the random version

Φ−1
{
P(Yi = 1 | Xi)

}
= β0 + β1Xi

then we can identify by

Cov(Φ-1
{
P(Yi = 1 | Xi)

}
,Xi) = β1 Var(Xi)

and

β1 =
Cov(φ-1

{
P(Yi = 1 | Xi)

}
,Xi)

Var(Xi)

This result is for identification and in this sense is valid. The probability should
not be worried in identification since we are assuming, in identification that
we know the population Y and X.

In order to interpret the coefficient, we consider the average partial effect
(APE). The APE is actually talking about the regressor like how unit of X
increment causes the Y to change. The coefficients can be just part of this
effect when the model is not linear. In a more general way we consider

Y = m(X, U) = E(Y | X, U)
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5. binary choice model

as model with no error term which is already the expectation. Then the APE
of U at X = x fixed is

EU|X
[∂m(x, U)

∂x

∣∣∣X = x
]

So in our case here our m is

m(X) = E(Yi | Xi = x) = P(Yi = 1 | Xi = x) = p(x)

the last equality is due to the Bernoulli distribution of Yi .Then the APE of X is

APEX = E
(
p′(X)i

)
= E

(
φ(β0 + β1Xi)β1

)
where we use small phi for density. If we know both beta then the sample
analogue estimator works. Or if we have consistent estimator also works which
is

ÂPE =
1
n

n∑
i=1

φ(β̂0 + β̂1Xi )̂β1

Estimation

We use MLE in the model. Familiar idea just mention the notation. Recall
likelihood function is about the parameter so

L(θ | X)

is the likelihood. The MLE estimator is

θ̂MLE = augmaxθ∈Θ L(θ | X)

also the equivalent log likelihood

θ̂MLE = augmaxθ∈Θ logL(θ | X)

Lecture gives the detailed proof of MLE of the linear regression model which
finally shows the equivalence result of LSE and sample analogue. Makeup
Notice the assumption of ui ∼ N(0, σ2). MLE here is applied as

P{Yi = 1 | Xi = x} = Φ(β0 + β1x)

P{Yi = 0 | Xi = x} = 1 − Φ(β0 + β1x)

together we have

P{Yi = y | Xi = x} = Φ(β0 + β1x)y(1 − Φ(β0 + β1x))1−y
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then our likelihood becomes

L(b0, b1; Y1, .., Yn | Xi , ..., Xn)

=
n∑
i=1

log p(Yi | Xi ; b0, b1)

=
n∑
i=1

{
(Yi logΦ(b0 + b1Xi)) + (1 − Yi) log(1 − Φ(b0 + b1Xi))

}
We can analysis all those properties of MLE estimator while not covered in
this course. The resulting function looks like the logistic regression.

Extended to Multiple Variable

The model simply becomes

Yi = 111{β0 + β1Xi + β2Wi ≥ ui}

with assumption ui | X1, Wi ∼ N(0, 1). This also composed three assumption
as before. Then the CCP

P{Yi = 1 | Xi = x, Wi = w} = P{β0 + β1Xi + β2Wi ≥ ui | Xi = x, Wi = w}

= P{β0 + β1x + β2w ≥ ui}See notes by independence

= Φ(β0 + β1Xi + β2Wi)

The average partial effect. The APE in binary choice model is actually about
the objective function which is the probability of the Y to be 1. Analogously
the objective function in linear model is the Y itself. Identification is the same.
Omitted.

6 casual inference

We focus on Potential Outcome Approach. Motivated by medical study. No
need to specify the specific formulae or equation for this. Let consider the
experiments. We have two potential outcomes

(Yi1, Yi0)

the first state 1 is the potential outcome under treated state and the state 0 is
the state under control. So these generate 2 potential outcome. Let Di ∈ {0, 1}
which indicates whether the sample is treated or under control. Treatment
effect is thus

Yi1 − Yi0

so we are comparing the same person. The treatment effect is heterogeneous
which means the effect is different across every person. The most important
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6. casual inference

quantity we want to recover from data is the average treatment effect which is

ATE = E[Yi1 − Yi0]

and average treatment effect under treated

ATT = E[Yi1 − Yi0 | Di = 1]

like a subgroup of people both under control and treatment. Usually, we can
only observe either Yi1 or Yi0 since usually a person can either be treated or
control. So what we observe is

Yi = DiYi1 + (1 − Di)Yi0

so the table will have missing values. The thing we can observe are Yi , Di , Xi

where Xi can be demographic information about participants. Let’s assume
that (Yi , Di , Xi) are iid across people however this is still not enough to pin
down the ATE. For Di the decision depends on each person them-self which
may depends on different personality. This is more like the bias but not about
the iid distribution.

Our real assumptions :

• Randomized Control Trial: (Yi1, Yi0, Xi) are independent from Di

Then we can identify the ATE:

ATE = E (Yi1 − Yi0)

= E (Yi1) − E (Yi0)

= E (Yi1 | Di = 1) − E (Yi0 | Di = 0)

= E (Yi | Di = 1) − E (Yi | Di = 0)

the equities are all due to independence. Then we can write

=
E(YiDi)
P(Di = 1)

− E(Yi(1 − Di))
P(Di = 0)

and do sample analogue estimator.
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