Math 215 Notes

1. Linear differential equation

We define the linear form of differential equation as

Y +pl)y = f(z)
Liner means the the DE is linear in ¢’ and y. Since it is not separable, we imply the
method integrating factor r(t) which is to construct a total derivative of r(¢) - y. We want
a r(x) satisfying
y (@) +y-r()p(r) = f(o)r)

where r(z)p(z) = r'(x). Then for convenience, we consider p(z) = p instead, we can get
r(t) = ef vt

then the DE becomes

@) = 1) (e) = r(oly(e) = [ 1) r(a) da

which is solvable.
2. Non-linear exact differential equation
Let form of deferential equation to be

d
M(a,y)de + N(e,y)dy =0 = M(e,y) +N(e,y) 7 =0

Definition 1. Exact deferential equation A DFE is called exact if there is a potential
function ¢(z,y) s.t. M = ¢, and N = ¢,,.

Theorem 1. If M,, = N,, then near any point (zo,yo) (locally) there is a function ¢(x,y)
so that ¢, = M and ¢, = N.

which generate the way to check whether a DE is exact of not. Notice this does not works

globally.

(a) Solving the exact DE
@ Applying theorem 1 to check the exact-ability of the DE.
@ Because of the existence of the potential function, let

o, y) = / M(z,y)de = Q(z,y) + h(y)

since M is generated from the partial diri. of ¢, so the integral is w.r.t x and the
constant term may include y.
@ we get ¢ so far. Then we have

by(,y) = %[Q(m,th(y)J = Q(x.y) +H(y) = N(z.y)



then h'(y) = N(x,y) - @,. Then we know both Q(z,y) and h(y) which gives implicit
form of ¢(x,y).

(b) Case for inexact differential equation
Similar to the linear DE, we want to find an integration factor u(z,y) to construct an
exact DE and consequently solve is by process form (a). The DE becomes

dy
uM(z,y) + uN(z,y) - =0

and in order to make it exact, we need
(uM)y = (uN)e = p,M + pM, = piN + uN,

which is a PDE, difficult to solve and not aim for this course. So we try p = p(z) and
p = p(y) which makes several terms above diminishes. Q: Why we care about PDE?
What we care about is whether they are equal or not?A: Since we want to use this DE
to solve pu.

3. Autonomous Equation

Definition 2. Let z = z(t) and % = f. Iffis independent from from t, which is f = f(z),

then we call 2 = f(z) autonomous equation. If f(zy) = 0, then zg is a fized point, and
then x(t) = ¢ is a constant/equilibrium solution.

Again, remember the solution of the DE is a function z w.r.t . So here the equilibrium
solution is a constant function.

Not finished yet

4. Second order linear ODE

The second order ODE is in form of
A(@)y" + Bx)y' + c(x)y = F(z) — c" +p(a)y’ +q(x)y = f(z)
it is called homogeneous if f(z) = 0 and non-homo if f(z) # 0. Linear means the equation

involved the linear combination of 3.

Theorem 2. Principle of superposition for homogeneous equations
If y1(x) and yo(x) are solutions of the homogeneous equation

y" +p()y +q(z)y =0
then so is y(z) = c1y1(x) + coyo(x), which is also the general solution of the ODE.

proof needed to be made up which is in the notes

Theorem 3. Unique existence Suppose p,q and f are continuous function on the interval
Tandxzg € I. Letyy,yo € R. Then the Second order liner ODE (both homo and non-homo)
with initial conditions

y(zo) = vo & ¥'(x0) = w1
has a unique solution y(x) on the entire interval I.



What need to be notice is that we need k initial conditions for kth order differential
equations.

(a)

The method fo Redution of Order

If a solution y;(x) is known for th homo. ODE, then we can find a second solution
y2(x) by proposing

ya(2) = y(x) - v(z)
It can be shown that w = v’ satisfies a first order linear equation which we can solve.
This method is general. It can be shown with the coefficient all as function of x. Need
to be made up.

Constant coefficient 2nd linear ODE
The form of this constant one is simply
ay’ +by +cy=0

where a, b and ¢ are all constant. Here we are motivated by

V' =Ky =0 — ylz)=e*

So we try y(z) = €. Then the DE becomes
(ar® 4+ br + c)e™ = 0.
which indicates
ar* +br+c=0
which is called the characteristic equation.

Since the char. eq is quadratic so we can use the common method to solve for the
roots. It also have three cases for solutions:b*> — 4ac ><= 0.

For the case b? —4ac > 0 it is quite simple. Combining with the theorem above we can
find the two solution y; and y, and consequently the general solution. Finally with
the given initial conditions, we find ¢; and cs.

For the case b* — 4ac = 0, two roots are the same. Then the general solution become
y(x) = c1e™ + g - we'™
Then repeat the similar process as above.

For the case b* — 4ac < 0, we should expect the complex solution which indeed is.
No here we need some knowledge of complex number. By the solution of quadratic
equations, we have the solution

—b+Vb? — 4dac

2a

Ty, T2 =

since b? — 4ac < 0, then we have

—b+dac—b%2-9 —b +dac—b? . ,
= 5 :2—j:—2 1= At
a a a




just use the greek letter for a simpler format. Then by the same reason that

Yo, Y1 = e()\iiu)x

are solutions for DE, but we prefer real value solutions. So for yy = e***)® we have

Yo = Re y, = Re (e - ) = Re[e™(cos(pux) + i - sin(px))] = e cos(px)

A

yp = Imyy = Im(...) = e sin(ux)

Also for the case y; = e?~#)%  The result is

Jo = €N cos(px) = Yy,

so the general solution become

A A

y(x) = ¢p - e cos(px) + o - € sin(pux)
R WA AR, y(z) & DE W, B
Ly=ay +by +cy=0

Bp. L AEH—A operator 1#43% DE T K, A, BOLHFEIHRLIMEET
R, VA, 4 yo & DE#G—AEE ab Fo c FRAFE, M

Ly, = ayl + by, + cyo =0
= (Re Ly, =0) A (Im Ly, =0)
= (L(Reya) = 0) A(L(Imya) = 0)
= L(y1)=0A L(y2) =0

Complex number relative in this course
(a) Euler’s equation
The formula for Euler’s equation is
e = cos(t) + isin(t)

the proof is using Tyler’s expansion, omit here make up later. The Euler’s identity is
where ¢ = 7, then

em = —1
another property for complex number used here is
e = ¢ . ¢ = ¢[cos(b) + isin(D)]

An application for Euler’s equation is to prove the double angle formula.



5. Mechanical Vibration: Spring-Mass system

WEAB: —AREA m Wk — R, BREANGHRLE, TREEEA O,
HAN G AN E—ZHIEH, WA o(t) A—HERa9H, Fatast TREEE 0 48
B, MERFZASNZE, BBEFRE 2 ETH,

(ma =)ma" = Fspring + Fpamping + FpaternatForce
here we do not consider external force and @ Fspring = kx @ Fpamping = —ca’ which is
simply the air resistance @ F... = 0. Then we have
Frowa = ma” + e’ + kx
A ERABEMT B BT — 2 BABNEHEE, EF m,k>0,¢>0,
(a) Undamped case: ¢ = 0
Consider F' = 0, What does it means for F=07. The equation becomes

mz” + kx =0

char. eqis mr? +k = 0, then r = 4 wyi, where wy = \/% . Then the general solution

becomes
x(t) = crcos(wot) + casin(wot)

since e® = 1. z R XX TRBI BT T RD —FHX, B
Acos wt + Bsinwt = R - cos(wt + 0)

where R = /A2 + B? and cos(6) = 4.sin(6) = £. Then R is called the amplitude and
d is called the 'phase shift’. X AN &3+ A amplitude F# period (Period = 27 /w).

(b) Damped case: ¢ > 0
Still here let Fr., equals zero. Then the equation becomes
ma” +cx' +kx =0

Our expect (truth): @ HTREZMRK, REAFIR L, I limy_,o x(t) = O@For
0 < ¢ << 1, small damping, thus slow decaying, solution still oscﬂlates@ Forc>>1,
large damping, thus fast decay, solution does not oscillates.

Then if we solve this equation, depending on A there are three cases. For A > 0 and
A = 0 it is exactly same as others with the solution

Yaso = c1- € ey e

Yao=cCr-€+cy-x-e”

and for this two cases the solution does not oscillate (since not trig. terms). For the
case A < 0, we have

Yaco = c1 - € m cos(wt) + ¢y - e~ 2w sin(wt)



So the cases become: @A < 0 under damping @ A = 0 critical damping @ A>0
overdamping. & % A =0 B ¢ —4mk =0 B, BE69 o(t) XA B, HbX
A trig. terms, BH R4 oscillating.

(¢c) Non-homogeneous 2nd linear ODE The form of non-homo 2nd linear ODE is
Ly =At)y" + B(t)y' + C(t)y = f(x)
Theorem 4.
y(t) = yp(t) + e(t)
where y. = c1y1(t) + coya(t) is the general solution of Ly = 0, which is the solution of
its homo. ODE, we call it the complementary homo. solution.
. Method of Undetermined Coefficients
This is the first method to solve y, for a large class of Ly = f where

N

Ly=ay" +by +cy= an(t) e (cicos(Bt) + casin(Bt)) = f(t)

n=1

where p,(t) is the polynomial w.r.t t. The the solution y,(the particular solution) should
be in the similar form. So we divides the condition if f(¢) into different cases to see how
to solve for y,(t) and then combine with its complementary homo. to get the general
solution.

LE3#£’in the similar form’ 8, tdw f(t) £ poly. F= trig. 89, W y, 45 E =2 & poly.
Fo trig. B9RAR; 4R f(t) L exp. Fo pol. B9TAR, W] y, ¥ L% E poly. Fo trig. #9FAR,

A&, 44 poly #9EE, BXA vy, M HE MR FHRE FKIKAS linear combination;
L & F| trig. function B, T ALE &£ sin F» cos #9 linear combination. & 7 /5 4:
. Forced oscillation and resonance
In this section we consider the 2nd ODE as
ma” + cx' + kx = f(t) = Fy cos(wt)

which we specify the force in periodic form. Similar as before, we discuss in two cases —
damped and undamped.

(a) Undamped case: ¢ = 0

The ODE becomes
m"x + kx = Fycos(wt)

then we get the x.(t) is

zo(t) = cycos(wot) + casin(wot)



where wy = \/g is the natural frequency. Then for the particular solution z,(t) we
have
xp(t) = Acos(wt) + Bsin(wt)
then if w # wy, then it is the particular solution with the give I.C solving A and B; if
w = Wy, then
xp(t) = At cos(wpt) + Bt sin(wot)

Combine those two cases together we can see

o when w # wy, amplitude = Bt which is growing in t

e when w = wy, amplitude = ﬁ, which does not grow in t but get larger and

larger as w — wy.

This is a phenomenon of resonance (34 ) .

(b) Damped case: ¢ > 0

The ODE becomes
ma” + ca’ + kx = Fycos(wt)

Then we figure out the case for x.(t) is one of the following:

e when A >0
To(t) = cre™" + cpe”™
e when A =0
z.(t) = Ae" ' + Bte am!
e when A <0

zo(t) = ae” 2 cos(put) + be” 2 sin(ut)
where pu = #\/4mk — 2
Then the form of a particular solution is
zp(t) = Acos(wt) + Bsin(wt)

NO OVERLAP WITH z.(t) AT ALL, hence valid. Then combine those two cases
together we have

zg(t) = ze(t) + (1)
Exp.decay Peri.persistent

so as t — oo . is negligible as the transient part and xz,(t) still exists as the periodic
part. 7£%, the long time behaviour = steady periodic part £ ¥ F the given periodic
forcing, %5 initial condition &%, Notice some times we may use matrix to solve the
parameter A and B.

8. Laplace transform

Definition 3. For a given function f(¢) defined for ¢ > 0, its Laplace transform is another
function £{(s) defined by

Lhx) = /0 T Fetds

where s is a real parameter in the improrper integral.



Recall the definition for a convergence in improper integral, which is the limit for

(3 A
/ g(t)dt = lim g(t)dt

A—00 a

exists for all A, otherwise it diverges.

Remark 1. If [g(t)| < h(t) and [° h(t) dt converges, then [ g(t)dt converges.

Notice, for the Laplace transform, the larger the S, the smaller the integrand, the more
likely to converge. The domain of Lf(x) is the set of s that makes the integral
converges. It is usually an open interval (a, c0) for some a.

(a) Properties of Laplace transform

i. It is a linear map (operator) which satisfies
Liaf + g} = alf+ Ly
ii. Not multiplicative, which is

Lf-Lg # L{fg}

iii. Uniqueness question

(b) Inverse Laplace transform

Simply defined as the inverse of Laplace transform. If L{f(¢)} = F(s), then we define
LHE(s)} = f(t)
(c) First shifting property
Definition 4. If L{f(t)} = F(s), then
L{e™ - f(t)} = F(s +a)
Proof.

L{e™f(t)} = /OOO F(t)e - e dt = /Ooof@)e“”“)dt: F(s +a)

Also, the inverse also satisfy s.t L7H{F(s+a)} = e f(t).
(d) Laplace transform of derivatives and ODEs

Lemma 1.
L{fy =s-L{f} = f(0)

and for f", consequently we have

L{f"} = s"L{f} = sf(0) = £(0)



This lemma can be used to solve the ODE.
Lemma 2. (The second shifting law)

Let a > 0. Then
L{u(t —a)f(t —a)} = e L{f(t)}
The proof is simply using integral by substitution.

(e) Heaviside Function 4= H-3K & &
Definition 5. The Heaviside function is defined as

0,xz<0
H(z) = 1, >0

The middle point at = 0 is not important. 4% ¥k ¥y & 3 )8 & 3+ A B 589 step
function #935-& 3587 % # (piecewise continuous function).

Example: Find the L.T of the u(t — a) and f(t) = 1 if € (a,b) and 0 otherwise.

Answer:

_ 0o _
est esa

L{u(t—a)} = / u(t —a)e " dt = / e "t dt = — =
0 a s |, s

Then for f(t) we can rewrite the function into f(t) = u(t — a) — u(t — b) then

e—sa e—sb

L{F()} = L{u(t — a)} — L{u(t —b)} = ————
Example:

Answer:

9. Convolution %47

Definition 6. The convolution of the function f and g is defined as

f*g:/_oo flt—=7)g(r)dr

which is equivalent to

fro=[ gtt-ns@r
which is commutativity which can be proved by change of variable. In 215 we assume
the function f and g supports only on [0, 00), so the integral above supports only on |0, ]
which is

f*gz/o f(t —7)g(r) dr

The convolution has following properties: @f xg=g* f @(cf) xg=-c(f*xg)=fx*cg
B fxg)xh=fx(gxh).



10.

11.

Theorem 5.
L{f =g} = F(s) - G(s)
The proof simply involves double integral and using the change of variable.

Dirac delta function and Impulse response

The somewhat formal definition is

e—0

and it should satisfy

WA BT AR, WwRBERAALS 0, WRSERFT 1; R XA RLEEN
BAOBREA 0, B, HTAEBGEERK F(1)delta FEib L

b
/ F()8(t) dt = £(0)

we can define §(t) rigorously as the linear map: f(t) — f(0) question. Translate the
rectangle to d.(t —a) — 0(t —a). K7, LiTAELH

d
St —a) = Eu(t —a)
then the laplace transform is

L{(t—a)} =€

First order systems of DE

The general form of a fist order DE system is
%Y:P@?+7@
where P(t) is a matrix. The system is said to be linear in x if
Fi(t,x1,....xy) = g;(t) + pa(t)x1 + pjo(t) e + ... + pjn(t)zs, J € [1,7]

where j is the index of the jth equation and n is the nth variable x.

(a) Solution Space

Let V be the set of all solution of a homogeneous system 7’ = P(t)Z. Then the
solution space is

V=A{Z@t): 7" =Pt)Z,te (ab)}

As a vector space which consisting of all z(t)s’ satisfying the equation, any linear
combination of elements in it is also a solution.

Now consider the non-homo system.



12.

Theorem 6. If 7/,(t) is a particular solution of

d
%7@) = PO)T () + 7 (1)
then every solution can be written as

(1) =Tolt) + 7 (1)

(b) Fundamental matrix

For homogeneous system, let 7 (¢), 2 2(t) be two linearly independent solution to the
system. Then we define the matrix

. a; G2

S \Ub by

as fundamental matrix consisting of the column vector as ?1 and ?2.

[

Eigenvalue Method for Homo. Constant coefficient system

Still consider the sysytem %7 = Az where A is constant real n by n matrix. The
solution space is a n-dimensional vector space. We want to find a simple basis of V. We
try 7 = ektﬁ, where ¥ is a constant vector. We find

MM = AMNT = \V = AV

hence 7 is a eigenvector of A with eigenvalue A\. So our strategy is to find all possible
eigenvalues: real and distinct, repeated, complex. 43 K18 3T Z AT 7 7% 4% 2] ODE #9#%,
AR B transfer #| matrix P,

(a) Complex eignvalue
Lemma 3. If a real matriz A has an eigenvalue A with eigenvector v, then it also have

a eigenvalue \ with corresponding eigenvector v which is simply the conjugate of v.

Lemma 4. If 7 = y(t) +iz(t) is a complex valued solution to %? where A is real.
Then y(t) and z(t) are also real valued solutions.

(b) Repeated Eigenvalues

Algebraic multiplicity of an eigenvalue is power m of A in the char. equation (A —
An)™; and the geometric multiplicity is the maximum number of linearly independent
eigenvector of \,. Notice, the geo.multi. is always less than or equal to the algb.multi..

Remark 2. In general, if \; is a repeated eigenvalue(alg. multiplicity greater than 1)
of matrix A with only one eigenvector vy, in addition to 7 (f) = e, the second

solution is in form of
Tot) = MV 1 + V)

since we need

7= AT,



13.

14.

we can get

(A — )\1])72 = 71

use this to find ¥'5. For example, we have already known A has two egi. value
A1, lambdas and \s is repeated. Then

70@) = 61€A1t71 + 626A2t72 + C;g(B)\Qt(lf’l)_l> + 72)

Phase portrait for 2D linear system

Consider 7' (t) € R? and A € M(2 x 2, R). Each solution to 7' = A7 form a trajectory
in R2. Notice the trajectory of y(t) = @ (t¢) is the same as ' (¢). In phase portrait we
consider all trajectory in R?. We have 3 cases: \; < )y real unique, \; = Ay complex
conjugate and A\; = A\ repeated.

Casel(a): Ay < Ag <0 (sink)

Casel(b): 0 < A\ < A (source)

Casel(a): Ay <0 < Ay (saddle)

Case2(b): A\, a2 = a+bi,0 < a < b (spiral source)
Case2(c): A\, Ay =a+bi,a <0 < b (spiral sink)
Case3: A\ = Ay # 0 (hard to draw)

Nonhomo. System

The form is simply
d
E?:Pm?+7@

recall fundamental matrix, it satisfies

/ —_

X =PX

(a) Variation of Parameter method

Fo= [ X ds

this is the most general method to solve the solution, even though the matrix is time
dependent.

(b) Undetermined coefficient

Exactly the same as the previous case. We first solve the homo case and guess the par-

ticular solution corresponding to the term ? and also check whether it is overlapping
with the homo solution.



15. Non linear system
Here we just talk about the autonomous non linear system, which is

d

where F does not depends on t containing just x and y. Notice 7 = (z,y)”. Critical
point = equilibrium = fixed point and it means, let T, is a fixed point then

F(Ty) =0

(a) Linearization in two dimensional case
We focus one the behavior around the fixed point, so we find the linearization by
Taylor expansion (two dimension). Let py = (zo,yo) be the fixed point then

f(xvy) - f(Io, yO) + fm(p)(x - 'TO) + fy(p)(y — yo) + h.o.t

9(z,y) = f(xo,y0) + 9=(p)(x — x0) + 94(P)(y — y0) + h.o.t

hot means higher order term. Then we use the jacobin matrix
d d
djul _d el e Sy “I' L hodt
dt |v dt |y 9z Gyl |V

il =]

where u =z — xg and v =y — yj.

in short



