
Math 215 Notes

1. Linear differential equation
We define the linear form of differential equation as

y′ + p(x)y = f(x)

Liner means the the DE is linear in y′ and y. Since it is not separable, we imply the
method integrating factor r(t) which is to construct a total derivative of r(t) · y. We want
a r(x) satisfying

y′ · r(x) + y · r(x)p(x) = f(x)r(t)

where r(x)p(x) = r′(x). Then for convenience, we consider p(x) = p instead, we can get

r(t) = e
∫
p dt

then the DE becomes
d

dx
[r(x)y(x)] = f(x) · r(x) =⇒ r(x)y(x) =

∫
f(x) · r(x) dx

which is solvable.

2. Non-linear exact differential equation
Let form of deferential equation to be

M(x, y) dx+N(x, y) dy = 0 =⇒ M(x, y) +N(x, y)
dy

dx
= 0

Definition 1. Exact deferential equation A DE is called exact if there is a potential
function ϕ(x, y) s.t. M = ϕx and N = ϕy.

Theorem 1. If My = Nx, then near any point (x0, y0) (locally) there is a function ϕ(x, y)
so that ϕx = M and ϕy = N .
which generate the way to check whether a DE is exact of not. Notice this does not works
globally.

(a) Solving the exact DE
1 Applying theorem 1 to check the exact-ability of the DE.
2 Because of the existence of the potential function, let

ϕ(x, y) =

∫
M(x, y) dx = Q(x, y) + h(y)

since M is generated from the partial diri. of ϕ, so the integral is w.r.t x and the
constant term may include y.
3 we get ϕ so far. Then we have

ϕy(x, y) =
d

dy
[Q(x, y) + h(y)] = Qy(x, y) + h′(y) = N(x, y)



then h’(y) = N(x,y) - Qy. Then we know both Q(x, y) and h(y) which gives implicit
form of ϕ(x, y).

(b) Case for inexact differential equation
Similar to the linear DE, we want to find an integration factor µ(x, y) to construct an
exact DE and consequently solve is by process form (a). The DE becomes

µM(x, y) + µN(x, y)
dy

dx
= 0

and in order to make it exact, we need

(µM)y = (µN)x =⇒ µyM + µMy = µxN + µNx

which is a PDE, difficult to solve and not aim for this course. So we try µ = µ(x) and
µ = µ(y) which makes several terms above diminishes. Q: Why we care about PDE?
What we care about is whether they are equal or not?A: Since we want to use this DE
to solve µ.

3. Autonomous Equation

Definition 2. Let x = x(t) and dx
dt

= f . If f is independent from from t, which is f = f(x),
then we call dx

dt
= f(x) autonomous equation. If f(x0) = 0, then x0 is a fixed point, and

then x(t) = x0 is a constant/equilibrium solution.
Again, remember the solution of the DE is a function x w.r.t t. So here the equilibrium
solution is a constant function.
Not finished yet

4. Second order linear ODE
The second order ODE is in form of

A(x)y′′ +B(x)y′ + c(x)y = F (x) −→ cy′′ + p(x)y′ + q(x)y = f(x)

it is called homogeneous if f(x) = 0 and non-homo if f(x) ̸= 0. Linear means the equation
involved the linear combination of y(n).
Theorem 2. Principle of superposition for homogeneous equations
If y1(x) and y2(x) are solutions of the homogeneous equation

y′′ + p(x)y′ + q(x)y = 0

then so is y(x) = c1y1(x) + c2y2(x), which is also the general solution of the ODE.
proof needed to be made up which is in the notes

Theorem 3. Unique existence Suppose p,q and f are continuous function on the interval
I and x0 ∈ I. Let y1, y0 ∈ R. Then the Second order liner ODE (both homo and non-homo)
with initial conditions

y(x0) = y0 & y′(x0) = y1

has a unique solution y(x) on the entire interval I.



What need to be notice is that we need k initial conditions for kth order differential
equations.

(a) The method fo Redution of Order
If a solution y1(x) is known for th homo. ODE, then we can find a second solution
y2(x) by proposing

y2(x) = y1(x) · v(x)
It can be shown that w = v′ satisfies a first order linear equation which we can solve.
This method is general. It can be shown with the coefficient all as function of x. Need
to be made up.

(b) Constant coefficient 2nd linear ODE
The form of this constant one is simply

ay′′ + by′ + cy = 0

where a, b and c are all constant. Here we are motivated by

y′′ − k2y = 0 −→ y(x) = e2x

So we try y(x) = erx. Then the DE becomes

(ar2 + br + c)erx = 0.

which indicates
ar2 + br + c = 0

which is called the characteristic equation.
Since the char. eq is quadratic so we can use the common method to solve for the
roots. It also have three cases for solutions:b2 − 4ac ><= 0.
For the case b2−4ac > 0 it is quite simple. Combining with the theorem above we can
find the two solution y1 and y2 and consequently the general solution. Finally with
the given initial conditions, we find c1 and c2.
For the case b2 − 4ac = 0, two roots are the same. Then the general solution become

y(x) = c1e
rx + c2 · xerx

Then repeat the similar process as above.
For the case b2 − 4ac < 0, we should expect the complex solution which indeed is.
No here we need some knowledge of complex number. By the solution of quadratic
equations, we have the solution

r1, r2 =
−b±

√
b2 − 4ac

2a

since b2 − 4ac < 0, then we have

=
−b±

√
4ac− b2 · i
2a

=
−b

2a
±

√
4ac− b2

2a
i = λ± iµ



just use the greek letter for a simpler format. Then by the same reason that

y0, y1 = e(λ±iµ)x

are solutions for DE, but we prefer real value solutions. So for y0 = e(λ+iµ)x we have

ya = Re yo = Re (eλx · eiµ·x) = Re[eλx(cos(µx) + i · sin(µx))] = eλx cos(µx)

yb = Imy0 = Im(...) = eλx sin(µx)
Also for the case y1 = e(λ−iµ)x. The result is

ȳa = eλx cos(µx) = ya

ȳb = ceλx sin(µx) = −yb

so the general solution become

y(x) = c1 · eλx cos(µx) + c2 · eλx sin(µx)

解释：从向量空间角度理解，y(x) 是 DE 的解，即

Ly = ay′′ + by′ + cy = 0

即，L 作为一个 operator 使得该 DE 等于零。为此，解的实部和虚部必须同时等于
零。所以，令 yα 是 DE 的一个解且 a,b 和 c 都是常数，则

Lyα = ay′′α + by′α + cyα = 0

=⇒ (Re Lyα = 0) ∧ (Im Lyα = 0)

=⇒ (L(Re yα) = 0) ∧ (L(Imyα) = 0)

=⇒ L(y1) = 0 ∧ L(y2) = 0

Complex number relative in this course
(a) Euler’s equation

The formula for Euler’s equation is

eit = cos(t) + isin(t)

the proof is using Tyler’s expansion, omit here make up later. The Euler’s identity is
where t = π, then

eiπ = −1

another property for complex number used here is

ea+bi = ea · eib = ea[cos(b) + i sin(b)]

An application for Euler’s equation is to prove the double angle formula.



5. Mechanical Vibration: Spring-Mass system

情境介绍：一个质量为 m 的物块被一弹簧链接，固定在左侧墙体上。记起始位置为 0，
并以力向右侧抻直一定的距离。则令 x(t) 是一有正负的值，表示相对于起始位置 0 点的
距离。对其进行受力分析之后，根据牛顿第二定律可得，

(ma =)mx′′ = FSpring + FDamping + FExternalForce

here we do not consider external force and 1 FSpring = kx 2 FDamping = −cx′ which is
simply the air resistance 3 Fext = 0. Then we have

FTotal = mx′′ + cx′ + kx

本质上是模拟了拉伸后松手时一刻及以后的运动模型。注意 m, k > 0, c ≥ 0。

(a) Undamped case: c = 0
Consider F = 0, What does it means for F=0?. The equation becomes

mx′′ + kx = 0

char. eq is mr2 + k = 0, then r = ±ω0i, where ω0 =
√

k
m

. Then the general solution
becomes

x(t) = c1cos(ω0t) + c2sin(ω0t)

since e0 = 1. x 的表达式可以通过配方变成另一种形式，即

Acos ωt+Bsinωt = R · cos(ωt+ δ)

where R =
√
A2 +B2 and cos(δ) = A

R
.sin(δ) = B

R
. Then R is called the amplitude and

δ is called the ’phase shift’. 这个被用来计算 amplitude 和 period (Period = 2π/ω).

(b) Damped case: c > 0
Still here let FTotal equals zero. Then the equation becomes

mx′′ + cx′ + kx = 0

Our expect (truth): 1 由于能量损失，最后会回到原点。所以 limt→∞ x(t) = 0 2 For
0 < c << 1, small damping, thus slow decaying, solution still oscillates 3 For c >> 1,
large damping, thus fast decay, solution does not oscillates.
Then if we solve this equation, depending on ∆ there are three cases. For ∆ > 0 and
∆ = 0 it is exactly same as others with the solution

y∆>0 = c1 · er1t + c2 · er2t

y∆=0 = c1 · ert + c2 · x · ert

and for this two cases the solution does not oscillate (since not trig. terms). For the
case ∆ < 0, we have

y∆<0 = c1 · e−
c

2m cos(ωt) + c2 · e−
c

2m sin(ωt)



So the cases become: 1 ∆ < 0 under damping 2 ∆ = 0 critical damping 3 ∆ > 0
overdamping. 注意当 ∆ = 0 即 c2 − 4mk = 0 时，解出的 x(t) 没有虚部。因此也没
有 trig. terms，因此不会 oscillating.

(c) Non-homogeneous 2nd linear ODE The form of non-homo 2nd linear ODE is

Ly = A(t)y′′ +B(t)y′ + C(t)y = f(x)

Theorem 4.
y(t) = yp(t) + yc(t)

where yc = c1y1(t) + c2y2(t) is the general solution of Ly = 0, which is the solution of
its homo. ODE, we call it the complementary homo. solution.

6. Method of Undetermined Coefficients

This is the first method to solve yp for a large class of L y = f where

Ly = ay′′ + by′ + cy =
N∑

n=1

pn(t) · eαt(c1cos(βt) + c2sin(βt)) = f(t)

where pn(t) is the polynomial w.r.t t. The the solution yp(the particular solution) should
be in the similar form. So we divides the condition if f(t) into different cases to see how
to solve for yp(t) and then combine with its complementary homo. to get the general
solution.

上述’in the similar form’ 指，比如 f(t) 是 poly. 和 trig. 的乘积，则 yp 也应该是是 poly.
和 trig. 的乘积；如果 f(t) 是 exp. 和 pol. 的乘积，则 yp 也应该是 poly. 和 trig. 的乘积。

注意，当有 poly 的时候，假设的 yp 应当是从其最高次到最低次的 linear combination;
当涉及到 trig. function 时，可能需要是 sin 和 cos 的 linear combination.未完待续

7. Forced oscillation and resonance

In this section we consider the 2nd ODE as

mx′′ + cx′ + kx = f(t) = F0 cos(ωt)

which we specify the force in periodic form. Similar as before, we discuss in two cases –
damped and undamped.

(a) Undamped case: c = 0
The ODE becomes

m′′x+ kx = F0 cos(ωt)
then we get the xc(t) is

xc(t) = c1cos(ω0t) + c2sin(ω0t)



where ω0 =
√

k
m

is the natural frequency. Then for the particular solution xp(t) we
have

xp(t) = A cos(ωt) +B sin(ωt)
then if ω ̸= ω0, then it is the particular solution with the give I.C solving A and B; if
ω = ω0, then

xp(t) = At cos(ω0t) +Bt sin(ω0t)

Combine those two cases together we can see
• when ω ̸= ω0, amplitude = Bt which is growing in t
• when ω = ω0, amplitude = F0

m|ω2
0−ω2| , which does not grow in t but get larger and

larger as ω → ω0.
This is a phenomenon of resonance（共振）.

(b) Damped case: c > 0
The ODE becomes

mx′′ + cx′ + kx = F0cos(ωt)

Then we figure out the case for xc(t) is one of the following:
• when ∆ > 0

xc(t) = c1e
r1t + c2e

r2t

• when ∆ = 0
xc(t) = Ae−

c
2m

t +Bte−
c

2m
t

• when ∆ < 0
xc(t) = ae−

c
2m

t cos(µt) + be−
c

2m
t sin(µt)

where µ = 1
2m

√
4mk − c2.

Then the form of a particular solution is

xp(t) = Acos(ωt) +Bsin(ωt)

NO OVERLAP WITH xc(t) AT ALL, hence valid. Then combine those two cases
together we have

xg(t) = xc(t)︸︷︷︸
Exp.decay

+ xp(t)︸︷︷︸
Peri.persistent

so as t → ∞ xc is negligible as the transient part and xp(t) still exists as the periodic
part. 注意，the long time behaviour = steady periodic part是由于 the given periodic
forcing，与 initial condition 无关。Notice some times we may use matrix to solve the
parameter A and B.

8. Laplace transform

Definition 3. For a given function f(t) defined for t > 0, its Laplace transform is another
function L{(s) defined by

Lf(x) =
∫ ∞

0

f(t)e−st ds

where s is a real parameter in the improrper integral.



Recall the definition for a convergence in improper integral, which is the limit for∫ ∞

a

g(t) dt = lim
A→∞

∫ A

a

g(t) dt

exists for all A, otherwise it diverges.
Remark 1. If |g(t)| ≤ h(t) and

∫∞
0

h(t) dt converges, then
∫∞
0

g(t)dt converges.

Notice, for the Laplace transform, the larger the S, the smaller the integrand, the more
likely to converge. The domain of Lf(x) is the set of s that makes the integral
converges. It is usually an open interval (a,∞) for some a.

(a) Properties of Laplace transform
i. It is a linear map (operator) which satisfies

L{c1f + c2g} = c1Lf + c2Lg

ii. Not multiplicative, which is

L f · L g ̸= L{fg}

iii. Uniqueness question

(b) Inverse Laplace transform
Simply defined as the inverse of Laplace transform. If L{f(t)} = F (s), then we define

L−1{F (s)} = f(t)

(c) First shifting property

Definition 4. If L{f(t)} = F (s), then

L{e−at · f(t)} = F (s+ a)

Proof.

L{e−atf(t)} =

∫ ∞

0

f(t)e−at · e−st dt =

∫ ∞

0

f(t)e−t(s+a)dt = F (s+ a)

Also, the inverse also satisfy s.t L−1{F (s+ a)} = e−atf(t).

(d) Laplace transform of derivatives and ODEs

Lemma 1.
L{f ′} = s · L{f} − f(0)

and for f ′′, consequently we have

L{f ′′} = s2L{f} − sf(0)− f ′(0)



This lemma can be used to solve the ODE.
Lemma 2. (The second shifting law)
Let a ≥ 0. Then

L{u(t− a)f(t− a)} = e−as · L{f(t)}
The proof is simply using integral by substitution.

(e) Heaviside Function 单位阶跃函数
Definition 5. The Heaviside function is defined as

H(x) =

{
0 , x < 0

1 , x > 0

The middle point at x = 0 is not important. 单位跃阶函数用来计算有断点的 step
function 的拉普拉斯变换 (piecewise continuous function).

Example: Find the L.T of the u(t− a) and f(t) = 1 if x ∈ (a, b) and 0 otherwise.
Answer:

L{u(t− a)} =

∫ ∞

0

u(t− a)e−st dt =

∫ ∞

a

e−st dt = −e−st

s

∣∣∣∣∞
a

=
e−sa

s

Then for f(t) we can rewrite the function into f(t) = u(t− a)− u(t− b) then

L{f(t)} = L{u(t− a)} − L{u(t− b)} =
e−sa − e−sb

s

Example:
Answer:

9. Convolution 卷积
Definition 6. The convolution of the function f and g is defined as

f ∗ g =

∫ ∞

−∞
f(t− τ)g(τ) dτ

which is equivalent to
f ∗ g =

∫ ∞

−∞
g(t− τ)f(τ) dτ

which is commutativity which can be proved by change of variable. In 215 we assume
the function f and g supports only on [0,∞), so the integral above supports only on [0, t]
which is

f ∗ g =

∫ t

0

f(t− τ)g(τ) dτ

The convolution has following properties: 1 f ∗ g = g ∗ f 2 (cf) ∗ g = c(f ∗ g) = f ∗ cg
3 (f ∗ g) ∗ h = f ∗ (g ∗ h).



Theorem 5.
L{f ∗ g} = F (s) ·G(s)

The proof simply involves double integral and using the change of variable.

10. Dirac delta function and Impulse response
The somewhat formal definition is

δ(t) = lim
ϵ→0

dϵ(t) ≡ δ(t) =

{
∞ , t = 0

0 , t ̸= 0

and it should satisfy ∫ ∞

−∞
δ(t)dt = 1

此处应该指出的是，如果给定区间内包含 0，则积分结果等于 1；如果区间不包含零则
积分结果为 0。另外，对于任意的连续函数 f(t),delta 函数满足∫ b

a

f(t)δ(t) dt = f(0)

we can define δ(t) rigorously as the linear map: f(t) 7→ f(0) question. Translate the
rectangle to dϵ(t− a) → δ(t− a). 未完，先记住结论

δ(t− a) =
d

dt
u(t− a)

then the laplace transform is
L{δ(t− a)} = e−as

11. First order systems of DE
The general form of a fist order DE system is

d

dt
−→x = P (t)−→x +−→g (t)

where P(t) is a matrix. The system is said to be linear in x if

Fj(t, x1, ..., xn) = gj(t) + pj1(t)x1 + pj2(t)x2 + ...+ pjn(t)xn, j ∈ [1, n]

where j is the index of the jth equation and n is the nth variable x.
(a) Solution Space

Let V be the set of all solution of a homogeneous system −→x ′ = P (t)−→x . Then the
solution space is

V = {−→x (t) : −→x ′ = P (t)−→x , t ∈ (a, b)}
As a vector space which consisting of all x(t)s’ satisfying the equation, any linear
combination of elements in it is also a solution.

Now consider the non-homo system.



Theorem 6. If −→x p(t) is a particular solution of

d

dt
−→x (t) = P (t)−→x (t) +−→g (t)

then every solution can be written as
−→x (t) = −→x c(t) +

−→x p(t)

(b) Fundamental matrix
For homogeneous system, let −→x 1(t), −→x 2(t) be two linearly independent solution to the
system. Then we define the matrix

X =

(
a1 a2
b1 b2

)
as fundamental matrix consisting of the column vector as −→x 1 and −→x 2.

12. Eigenvalue Method for Homo. Constant coefficient system
Still consider the sysytem d

dt
−→x = Ax where A is constant real n by n matrix. The

solution space is a n-dimensional vector space. We want to find a simple basis of V. We
try −→x = eλt−→v , where −→v is a constant vector. We find

λeλt−→v = Aeλt−→v =⇒ λ−→v = A−→v

hence −→v is a eigenvector of A with eigenvalue λ. So our strategy is to find all possible
eigenvalues: real and distinct, repeated, complex. 仍然通过之前的方法找到 ODE 的解，
然后 transfer 到 matrix 中。

(a) Complex eignvalue
Lemma 3. If a real matrix A has an eigenvalue λ with eigenvector v, then it also have
a eigenvalue λ̄ with corresponding eigenvector v̄ which is simply the conjugate of v.
Lemma 4. If −→x = y(t) + iz(t) is a complex valued solution to d

dt
−→x where A is real.

Then y(t) and z(t) are also real valued solutions.

(b) Repeated Eigenvalues
Algebraic multiplicity of an eigenvalue is power m of λ in the char. equation (λ −
λn)

m; and the geometric multiplicity is the maximum number of linearly independent
eigenvector of λn. Notice, the geo.multi. is always less than or equal to the algb.multi..
Remark 2. In general, if λ1 is a repeated eigenvalue(alg. multiplicity greater than 1)
of matrix A with only one eigenvector v1, in addition to −→x (t) = eλ1t−→v 1, the second
solution is in form of

−→x 2(t) = eλ1t(t−→v 1 +
−→v 2)

since we need
−→x ′

2 = A−→x 2



we can get
(A− λ1I)

−→v 2 =
−→v 1

use this to find −→v 2. For example, we have already known A has two egi. value
λ1, lambda2 and λ2 is repeated. Then

−→x c(t) = c1e
λ1t−→v 1 + c2e

λ2t−→v 2 + c3e
λ2t(t−→v1 +−→v 2)

13. Phase portrait for 2D linear system
Consider −→x (t) ∈ R2 and A ∈ M(2× 2,R). Each solution to −→x ′ = A−→x form a trajectory
in R2. Notice the trajectory of y(t) = −→x (tC) is the same as −→x (t). In phase portrait we
consider all trajectory in R2. We have 3 cases: λ1 < λ2 real unique, λ1 = λ̄2 complex
conjugate and λ1 = λ2 repeated.

Case1(a): λ1 < λ2 < 0 (sink)
Case1(b): 0 < λ1 < λ2 (source)
Case1(a): λ1 < 0 < λ2 (saddle)

Case2(b): λ1, λ2 = a+ bi, 0 < a < b (spiral source)
Case2(c): λ1, λ2 = a+ bi, a < 0 < b (spiral sink)
Case3: λ1 = λ2 ̸= 0 (hard to draw)

14. Nonhomo. System

The form is simply
d

dt
−→x = P (t)−→x +

−→
f (t)

recall fundamental matrix, it satisfies

X
′
= PX

(a) Variation of Parameter method

−→x t =

∫ t

X
−1
(s)f(s) ds

this is the most general method to solve the solution, even though the matrix is time
dependent.

(b) Undetermined coefficient
Exactly the same as the previous case. We first solve the homo case and guess the par-
ticular solution corresponding to the term −→

f and also check whether it is overlapping
with the homo solution.



15. Non linear system
Here we just talk about the autonomous non linear system, which is

d

dt
−→x =

−→
F (x, y)

where F does not depends on t containing just x and y. Notice −→x = (x, y)T . Critical
point = equilibrium = fixed point and it means, let −→x 0 is a fixed point then

−→
F (−→x 0) = 0

(a) Linearization in two dimensional case
We focus one the behavior around the fixed point, so we find the linearization by
Taylor expansion (two dimension). Let p0 = (x0, y0) be the fixed point then

f(x, y) = f(x0, y0) + fx(p)(x− x0) + fy(p)(y − y0) + h.o.t

g(x, y) = f(x0, y0) + gx(p)(x− x0) + gy(p)(y − y0) + h.o.t

hot means higher order term. Then we use the jacobin matrix

d

dt

[
u

v

]
=

d

dt

[
x

y

]
=

[
fx fy
gx gy

] [
u

v

]
+ h.o.t

in short
d

dt

[
u

v

]
= J(p)

[
u

v

]
where u = x− x0 and v = y − y0.


