
MATH 303 Stochastic process 随机过程

在随机过程中，将随机变量看做关于时间的变量，定义其所有可以取值的集合为 State Space，简写为 S。且目
前只讨论 S 是有限或者是有限可数的情况。通常也可以将其结论推广至无限应用。

1. Discrete Time Markov Chain
(a) Basic Notations and Definition

Definition 1. (Markov Chain 马尔科夫链) Let {Xn}n∈N be a series of r.v in S. Then we say
{Xn}n∈N is a Markov Chain or has Markov properties if: ∀n ∈ N ,∀xi ∈ S

P(Xn+1 = xn+1 | Xn = xn, Xn−1 = xn−1, ... , X0 = x0) = P(Xn+1 | Xn = xn)

This means the next behavior only depends on the current status and nothing to do with how it get
here. For example, the random walk, your position next second depends only on where you are now.
注意以上的符号用法中，我们用 Xn 的下标 n 指代时刻 n，即 t = n 时（假定时间是离散的）并假设
无论在哪一个时刻在给定的 state 下，都有固定的概率分布，该性质称之为 time homogeneity。数学
定义为

Definition 2. (Time Homogeneity) We say a Markov chain is time homogeneity if

∀ (x, y) ∈ S2, P(Xn+1 = x |Xn = y)

is all the same for all time n.

Summary：Markov Chain 的两点非常强的假设

• 下一时刻的状态只依赖于当前状态，与之前到达路径无关 (Markvo Property)

• 无论哪个时刻，两两状态间的概率不变 (Time Homogeneity)

对于概率通常用 Pij 表示，意为目前在 state = Xn = i 状态下，下一步到 Xn+1 = j 的概率。且由于
是概率分布，有结论

pij > 0,

∞∑
j=0

pij = 1

The second property can be proved made up later. Then consequently we can define the transition
matrix of M.C as the collection of all element Pij as

(P˜)ij = Pij

即矩阵的第 i行 j 列个元素是从 state i到 state j 的概率。因此行向量各个元素和为 1。注意 transition
matrix 一定是方阵。
Remark 1. Let the prob distribution of Xn (at time n) is µ = (µ1, ..., µN ). Then the prob. distribution
of Xn+1 is µ · P˜ by definition of matrix product.

Proof. Now we are asking for P(Xn+1 = sj)(Notice this is different form asking the M.C properties).
First we have

P(Xn+1 = sj) =
∑
k∈S

P(Xn+1 = sj , Xn = sk)

this is because {Xn = sk}k∈S form a complete set of mutually exclusive event. Then by conditional
probability we have

=
∑
k∈S

P(Xn+1 = sj |Xn = sk)P(Xn = sk)

=
∑
k∈S

µk · (P˜)kj
which is exactly the matrix product.
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值得注意的是，这里的矩阵乘法是向量右乘矩阵，而非一般的左乘。最后一步的 µ 的角标指的是第 k
个 state。

Remark 2. (When State space is infinite) When S is not finite or countable, then we can generalize
all concepts to infinite case. For example the transition matrix with infinite rows and column.

Remark 3. If we start with X0 under an initial distribution µ = (µ1, µ2)(consider two states case,
µ is a prob distribution on S) with corresponding transition matrix P˜ . Then we have the prob. dis-
tribution of Xn equals µ · P˜n.

Does the initial prob distribution the same as a row in the transition matrix?

个人理解 1 所谓 initial distribution 是说目前整个随机过程还并未开始，该概率分布指的是在第一
个时刻进入其中某个 state 的概率，与 transition matrix 中元素代表的概率不同。 2 无需纠结于
Remark3。形式上看似 µ · P˜n 并非只依赖于上一时刻的状态（因为至少有 µ 在，看似依赖于初始分

布）。其实所谓的只依赖于上一刻是指的上一个状态是 µ · P˜n−1，即需要上一时刻的概率分布必须是

充分的。一直右乘同一个矩阵说明性质 time homo.。

Definition 3. (Stationary Distribution) Let {Xn}n∈N be a M.C with transition matrix P˜ , and µ
be a distribution on S. We say that µ is a stationary distribution if µ · P˜ = µ.

Proposition 1. If {Xn}n∈N converges to a distribution µ as n → ∞, then µ is stationary.
Proof. Let µk be the prob. distribution of Xk. Then

un+1 = µn · P˜ n→∞−→ µ = µ · P˜
Thus stationary.

Definition 4. (Graph Representation of a transition matrix) Using a directed graph where each node
represents a state and we draw arrow from x to y is Pxy > 0, with weight Pxy. This graph is called
a transition diagram.

(b) Chapman-Kolmogorov Equation

Definition 5. (Generalized Remark3) For n ∈ N , we define the n-step transition probability as

Pn
ij = P(Xn = j |X0 = i)

and this consequently defines the n-step transition (prob.) matrix (P˜ (n))ij = Pn
ij（等式左边的 (n)

指的是 step n，右边的 n 是指数）.

Remark 4. One can also show (by induction on n and appeal to time homo.) that

∀ k ∈ N , P(Xk+n = j |Xk = i) = Pn
ij

A attempt should be made later and make up here
Definition 6. (Chapman-Kolmogorov Equation) The Chapman-Kolmogorov Equation provides a
method fpr solving the n-step probability. The equation is

Pn+m
ij =

∞∑
k=0

Pn
ik · Pm

kj

Interpretation of this equation is, starting from state i and go through state k at t = n on the way
to state j where finally land at t = m+ n.
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Proof.
Pn+m
ij = P(Xn+m = j |X0 = o)

=

∞∑
k=0

P(Xn+m = j, Xn = k |X0 = i)

this is simply the total probability in case of conditional probability. Then

=

∞∑
k=0

P(Xn+m = j |Xn = k,X0 = i) · P(Xn = k |X0 = i)

this is achieved by

P(A ∩B |C) =
P(A ∩B ∩ C)

P(C)
=

P(A |B ∩ C)P(B ∩ C)

P(C)
= P(A |B ∩ C) · P(B |C)

then by the definition of step transition we have

=

∞∑
k=0

Pn
ik · Pm

kj

(c) Classification of States(4.3 Ross)

• (Accessibility) A state is accessible from state i if Pn
ij > 0 for some n ≥ 0.

• (Community) Two sates i and j are communicate (i ↔ j) if i is accessible form j and j is accessible
from ii.

Above properties are can easily be checked by transition diagram. Communication is an equivalence
relation which satisfies reflexivity, symmetric and transitivity. Reflexivity and symmetric are trivial
by definition. Here prove transitivity.

Proof. (Transitivity) Want to prove: if i ↔ j and j ↔ k, then i ↔ k. The given condition can be
interpreted as

∃ m s.t Pm
ij > 0, ∃ n s.t. Pn

jk > 0

then by Chap.-Kolm. Equation we have

Pm+n
ik =

∞∑
ρ

Pm
iρ · Pn

ρk ≥ Pm
ij · Pn

jk > 0

the ≥ is because the sum must include the case ρ = j, that is j is just one case in the summation.
Vice versa need to show k can achieve i in the same way.
Therefore we can partition the space state into communicating class.

Definition 7. (Irreducibility) A M.C is said to be irreducible if there is only one communicating
class (e.g all states communicates with each other).
For example the one dimensional random walk.

S1 S2S3
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Definition 8. (Period) The state i has period d if Pn
ii = 0 whenever n is not divisible by d, and d is

the biggest integer with this property. If d = 1 then, i is called aperiodic. Formally the definition is

p = gcd{n : P(Xn = i) |X0 = i}

where gcd is the greatest common divisor. Or another more understandable interpretation is: The
period of a state i is the greatest common denominator (gcd) of all integers n > 0, for which Pn

ii > 0.

Notice the ”period” usually referred to a particular state. Each state may have different period.

Proposition 2. If i has period d and i ↔ j, then j also has period d.

Proof. By community we have

∃ n, m ≥ 0 s.t. Pn
ij > 0&Pm

ji > 0

Since i has period d, so we have, ∀ k s.t. Pk
jj > 0, we have

Pm+n
ii ≥ Pn

ijPm
ji > 0 =⇒ d |m+ n

Pm+n+k
ii ≥ Pn

ijPk
jjPm

ji > 0 =⇒ d |m+ n+ k

both from C-K-E. The | means devisable by (e.g d |m+ n means (m+ n)/d ∈ Z). Then we have

d | k =⇒ d ≤ d′

where d′ is the period of j. By symmetric we can show d′ ≤ d so pushing d′ = d.
The consequence of the proposition is that the periodicity is a class property (i.e all states in the same
class has this property).
Definition 9. (Recurrence and Transience) Let fi = P(Xn = i for some n ≥ 1 |X0 = i). We say i
is recurrent if fi = 1, and i is transient if fi < 1.

注意 fi 的定义：必须从零时刻时，从该 state 开始 . fi 实则只是一个描述性的定义，实际操作中无

太大意义。

This definition measure the ability of a M.C to revisit a state. Another good property is, the state is
either transient or recurrence, so we can split the state space into recurrent and transient spaces.

Remark 5. If Pii = 1 and i is recurrent, then i is called a absorbing state.

The absorbing state i usually looks like

i j

注意定义中 Pii = 1 意思是下一步只能到自己，recurrent 意为一定可以回来。所以回来则留下不离开
i 为 obsorbing。

(d) Properties of Recurrence and Transience
We first define the random variable Ni as

Ni = #{Xn = i |n ≥ 0}

and it has a range N ∪ ∞. It can also be represented as

Ni =

∞∑
n=0

1(Xn=i)
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简而言之，是一个计数过程。随机过程不断进行，每当其中一个时刻 Xk = i，Ni 就加一。且 Ni 的和

中要求 n = 0 开始，暗指了必须从时刻 0 开始计数。where 1(Xn=i) is 1 if Xn = i or 0 if Xn ̸= i, just
like a counting process or accumulator. Also if we think of 1(Xn=i) as a random variable, it follows a
Bernoulli distribution (either is or not). So

E(1(Xn=i)) = 1 · P(Xn = i) + 0 · P(Xn ̸= i) = P(Xn = i)

注意，上式的期望值当 n 取之不同时也不相同。

Proposition 3. • If i is recurrent, then P(Ni = ∞|X0 = i) = 1

• If i is transient and X0 = i, then Ni ∼ Geom(1 - fi). (i.e,P(Ni = m) = fm−1
i (1− fi)),E(Ni) =

1/(1− fi).

Interpretation of above proposition is, a recurrent sate is revisited ∞ many times, while for a transient
state, then chain doesn’t revisit the state after a certain times (and the probability to revisit is fi).
proof made up later Jan 13th.
Remark 6. • If state i is recurrent, then E(Ni |X0 = i) = ∞ (if transient, E < ∞).
• If state space is finite, then some state must be recurrent.

The first one is trivial may have some formal proof here. The proof for second one is —- we assume
all states are transients, so there is no state visited after a certain time, so contradicted.
Now we use n-step transition probability to characterize recurrence and transience.
Proposition 4. We say state i is recurrent if

∞∑
n=0

Pn
ii = ∞

is transient if
∞∑

n=0

Pn
ii < ∞

Less than ∞ means the probability is a concrete number (finite).
Proof. Only need to prove the expectation is the sum of n-step transition matrix.

E[Ni |X0 = i] = E[
∞∑

n=0

1(Xn=i) |X0 = i]

=

∞∑
n=0

E[1(Xn=i) |X0 = i] =

∞∑
n=0

Pn
ii

Collary 1. If i is recurrent and i ↔ j, then j is also recurrent
Proof. The recurrent here is used to be integrated into the C.K.E. By comm. and rec. we have ∃ k, m
s.t. Pk

ij > 0, Pm
ji > 0. Then ∀n > 0 we have

Pm+n+k
jj =

∑
s,t

Pm
jsPn

stPk
tj ≥ Pm

jiPn
iiPk

ij

then we check the characterized recurrent definition
∞∑

N=0

PN
jj ≥

∞∑
n=0

Pm+n+k
jj ≥

∞∑
n=0

Pm
jiPn

iiPk
ij ≥ Pm

ji (

∞∑
n=0

Pn
ii)Pijk = ∞

the first inequity is because the LHS start from 0 while the RHS start actually from m + k. Then
middle term of the the last term is infinity by recurrence of i. So we finally generate that the sum is
infinity and thus j is recurrent.
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So our consequence are
• Recurrence and transience are class properties (all states in the communicating class are all

either transient or recurrent).
• The collory can be relaxed as ”i is recurrent and i → j”
• If i → j but j ↛ i, then i is transient

2. Model: Gambler’s Ruin

The scenario is: a gambler has $n initially (capital) and play a game with probability p̄ of winning $1
and 1− p̄ of losing $1 otherwise. The gambler plays until he reach a goal of having $N ≥ n, and clearly
his wealth follows a Markov Chain.

The transition diagram is one dimensional with N + 1 states (n ∈ [0, N ]). The corresponding transition
matrix is

P˜ =



1 0 0 ... 0 0 0

1− p 0 p ... 0 0 0

0 1− p 0 p ... 0

0 0 1− p 0 p ... 0

... ... ... ... ... ... ...

0 0 ... ... 0 0 1


Obviously there are three communicating classes: {0}, {N} and {1, ..., N − 1}, where the fist two are
aperiodic and the last class is of period 2. Then a reasonable question is, let R be the event that the
”gambler goes broke”, and asking for P(R |X0 = n).

Model: Now let P(n) = P(R |X0 = n). Then the boundary conditions are P(0) = 1 and P(N) = 0.
Then for 1 ≤ n ≤ N − 1 we have

P(µ) = P(R |X0 = µ) = P(R |X1 = µ+ 1)P(X1 = µ+ 1 |X0 = µ)

+P(R |X1 = µ− 1)P(X1 = n− 1 |X0 = µ)

This can be generated by conditioning on R ∩ X0 = µ+ 1 and µ− 1Then we have

P(µ) = P(µ+ 1) · p̄+ P(µ− 1) · (1− p̄)

which is a 2nd order linear recurrence. Consider the Characteristic equation in x, we have

x = x2 · p̄+ 1 · (1− p̄) =⇒ p̄x2 − x+ (1− p̄) = 0

check ∆ = (2p̄− 1)2 ≥ 0. So two cases are

• ∆ > 0 ≡ p̄ ̸= 1/2 : Two roots are x1 = 1 and x2 = (1 − p̄)/p̄ = a (a for short). Then the ’general
solution’ is

x = P(n) = α · xn
1 + β · xn

2

where α&β need to be determined by the boundary conditions. Plugging in the boundary condition

α =
aN

1− aN
, β =

1

1− aN

so the general solution is

P(n) =
aN − an

aN − 1
= 1− an − 1

aN − 1
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• ∆ = 0 ≡ p̄ = 1/2: Similar to case in differential equation, when encounter with repeated root, we
assume the general solution to be

P(n) = α · xn + β · nxn

and using the boundary condition solving for coefficients. We get

P(n) = 1− n

N

So in summary, the solution is

P(n) =

{
1− an−1

aN−1
, if p̄ ̸= 1

2

1− n
N , if p̄ = 1

2

(1)

Remark 7. This type of problem is typically interpreted as a one dimensional random walk with absorbing
boundaries.

3. Model: Random walk in Z1

We consider the (discrete) uniform random walk and questioning is the state recurrent or transient?

Solution: First we will need a tool called Stirling’s formula, which is a approximation of n!. That is

n! ≈
√
2πn

(n
e

)n
As we showed previously, the way to prove transience or recurrence is by showing the sum of all n-step
transition probability is ∞ or not. Let’s consider the 1 dimensional case starting form 0. Since the
recurrence and transience are class properties, so it is valid to just show 0 is feasible.

Starting form 0. If we want to come back to 0, we must take 2n steps (since one dimensional) and easy
to see P2n+1

00 = 0. Thus

P2n
00 =

(
1

2

)n

·
(
2n

n

)
=

(
2n
n

)
22n

which means, we have to move 2n steps in total and want n to be forward and n to be backwards to get
back to 0. The summation becomes

∞∑
n=0

Pn
00 =

∞∑
n=0

(
2n
n

)
22n

=

∞∑
n=0

(2n)!

(n!)2 · 22n

apply the stirling’s formula to replace the factorial, we get
∞∑

n=0

1√
πn

→ ∞

we can compare to the series 1/n (we know 1/n is divergent and 1/
√
n is greater than it), so the series

diverges and therefore the symmetric 1-dimension random walk is recurrent. Also we can show that the
asymmetric 1-dimension random walk is transient.

4. Model: Random walk in Zd

By means of Characteristic function. Notations: we define −→e ′
js are the canonical basis of Zd. So we

define the R.W at steps −→
X i with probability

P(
−→
X i =

−→e j) = P(
−→
X i = −−→e j) =

1

2d
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通俗讲，在第 i 步时，向 −→e j 方向走的概率为 1/2d（2d 是因为有 d 个维度，则有 2d 个方向）。Then let
−→
S 0 =

−→
0 and −→

S n = position after n steps =
∑n

i=1

−→
X i, then

−→
S n+1 =

−→
S n +

−→
Xn+1

then we can define the transition probability as

P(
−→
S n+1 =

−→
S ±−→e j |

−→
S n =

−→
S ) =

1

2d

Definition 10. For −→
k ∈ Rd = (k1, ..., kd), we can define ϕ(

−→
k ), that is the characteristic function of −→S n

evaluated at −→
k ,s.t

ϕn(
−→
k ) = E(ei

−→
k ·

−→
S n)

Remark 8. • The product of −→k and −→
S n is scalar product in Rd of −→k and −→

S n. So

−→
k ·

−→
S n =

n∑
i=1

−→
k ·

−→
X i

• The Euler’s formula can be applied here

eiθ = cos θ + i sin θ

Theorem 1. The symmetric R.W in Zd is recurrent if d = 1, 2 and is transient if d ≥ 3.

Proof. make up later Jan 22nd

5. Limiting probability
The limiting probability is simply the proba. distribution of being at sate i as n goes to infinity which is

πj = lim
n→∞

P(Xn = j |X0 = i)

this also accounts for the proportion of time the M.C stays in each state in the long run. Let mi

be the mean # of transaction returning to i, starting from i. Then we have the proposition that the
proportion of time that the M.C stay at i must equal to 1/mi in the long run, so πi =1/mi. Also notice,

the limiting distribution depends does not depends on the initial state, so we can also write is as

πj = lim
n→∞

P(Xn = j), ∀

Proof. text book chapter 4 P216. incredible

Definition 11. A state i is said to be positive recurrent if mi < ∞; it is said to be null recurrent if
mi = ∞

It is easy to check that the one dimension symmetric random walk is null recurrent by

mi =
∑
n

2n · P (T = 2n) =
∑
n

1√
πn

= ∞

Notice that: 1 Positive and null recurrence are both class properties 2 If the state space is finite, then
all recurrent states are positive recurrent.
Definition 12. An aperiodic positive recurrent state is called ergodic. A ergodic M.C is a M.C whose
states are all ergodic.
Theorem 2. For an irreducible ergodic M.C, πj = limn→∞ Pn

ij always exists for all j, independent of i.
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In addition: 1 π is the unique solution to

π · P˜ = π &
∑
j∈S

πj = 1

2 πj = 1/mj , where mj is the mean return time to j (πi > 0). 3 πj by its definition can be written as

πj = lim
n→∞

#visits to j by total n transition
n

= long run proportion of time spent at j

注意，对于 1 来说，如果想用不等式解出 distribution，那么需要 check前提条件: irreducible and positive re-
-current. 其实对于大部分情况来说很好检查：irreducible 只需要看是否只有一个 communicating class
（直接检查是否 transition matrix 没有 0 在其中）；对于 positive recurrent 来说，往往遇到的情况都是
finite 的 state space，根据之前的结论可知，recurrent state 必然是 positive recurrent。
Definition 13. (Probability for inverse M.C) Assume the M.C has been operating for a long time with
stationary distribution π the limiting probability?. Let Yn = XN−n, take N as the time that M.C has
already operated. Then we define the time inverse transition probability for Yn as

Qij = P(Yn = j |Yn−1 = i) =
πjPji

πi

Proof. Yn is also a M.C Notes on Jan.31

由于 Yn 是从 X 的序列 tracing back，所以证明时注意站在 X 的视角注意角标。Notice the existence of
stationary distribution is necessary for the inverse M.C to be homogeneous.
Definition 14. We say the M.C is time reversible if

Qij = Pij

Remark 9. • We always have Pii = Qii

• For a reversible M.C
πiPij = πjPji

which is interpreted as the fraction of jumps at stationarity. This forms a so-called detailed balance.
Proposition 5. Let Xn be a ergodic irreducible M.C. If we can find a series of xi ≥ 0, s.t xiPij = xjPji

and
∑

xi = 1, then xi = πi and M.C is time reversible.
Proposition 6. (Kolmogorov’s criteria): An ergodic MC is time reversible iff for ∀ finite sequence of
states (i1, i2, ..., in), we have

Pi1i2Pi2i3 ...Pini1 = Pi1inPinin−1
...Pi2i1

visualization is

i1 i2

i3i4
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prove Feb 3rd starting from the stationary distribuion.

Example: Ehrenfest Chain
有两个罐子，一共M个球。每一步随机从其中一个罐子中拿一个球放到另一个罐子中。Let S = {0, 1, ...,M}
and Xn be the # of balls in urn 1. The probability is defined as

P01 = 1 PM,M−1 = 1 Pi,i+1 =
M − i

M
Pi,i−1 =

i

M

The chain is ergodic. The stationary distribution can be found by either solving the detailed balance
equation or guess and check. The result turn out to be a binomial distribution of π

π ∼ Bino(M,
1

2
)

6. Barnching Process

Definition 15. (Branching Process) Let Zi be the # of individuals at generation i, yn,i be the # of
offsprings of i th individual at generation n. Then the branching process is defined as the sequence of r.v.
{Zn}n≥0 such that {

Z0 = 1

Zn+1 =
∑Zn

i=1 yn,i
(2)

This is called the reproduction law.
• Zn defines a discrete time M.C on N .
• {0} defines a absorbing → recurrent class. We assume the probability P(yn,i = 0) > 0 and 0 is

accessible form all other states, so all other states are transient.
• Since the finite set of transient states can only be visited finite times. So we can expect, in the long

run, Zn is either ∞ or 0 as n → ∞.

Definition 16. (Probability Generation Function) Let X be a r.v on N . Then the probability generating
function of X is

GX(s) = EX(sX) =

∞∑
k=0

P(X = k)sk

• We have, in branching process, X is a discrete r.v. so we sum up the PMF for expectation.
• The radius of convergence is either greater than or equal to 1, since when s = 1,

∑
P = 1, which

means the radius of convergence is at least 1 (may use comparison test of series), so G(s) is well
defined ∀ s ∈ [−1, 1].

• By induction, similar to the moment generating function, we can have

G(k)(0) = P(x = k) · k!

注意该结果不需要泰勒展开，直接求导且令 s = 0。(Notice k is the kth derivative).
• Similar to the moment generating function, the probability distribution is uniquely determined by

the PGF, or equivalently, two r.v that have same PGF follows same prob. distribution.
• Properties: If X and Y are two independent r.v on N , then ∀s ∈ [−1, 1]

GX+Y (s) = GX(s) ·GY (s)

• If we set s = 1, we can work out several properties

G(1) = E(1X) = 1 G′(1) = E(X)

recall V ar(X) = E(X2)− E2(X), then

G′′(1) = E(X2)− E(X) = V ar(X) + (E(X))2 − E(X)

=⇒ V ar(X) = G′′(1) +G′(1)− (G′(1))2
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• The PGF is non-decreasing and convex on s ∈ [0, 1]. Other? It is easy to check that the first and
second derivative are all grater than 0.

Proposition 7. Let X1, X2, ..., XN be iid r,v with PGF GX(s). Let N be a r.v independent of X. Let
T =

∑N
i=1 Xi. Then we have

GT = GN (GX(s))

Proof.
GT (s) = E(sT ) = EN (E(sT |N))

=

∞∑
n=0

E(sT |N = n) · P(N = n)

=

∞∑
n=0

E(s
∑

Xi |N = n) · P(N = n)

=

∞∑
n=0

(GX(s))n · P(N = n)

= EN (GX(s)N ) = GN (GX(s))

Then we apply this result to the Branching process. Since Zn+1 =
∑Zn

i=1 yn,i, then

Gn+1(s) = GZn+1
(s) = GZn

(Gy(s))︸ ︷︷ ︸
by above result

= Gn(Gy(s)) = Gn−1(Gy(Gy(s))) = ... = Gy ◦Gy ◦ ... ◦Gy(s)︸ ︷︷ ︸
n+1 times composition

then we concludes that

Gn(s) = G
(n)
1 (s)

where RHS means the n-th iterate of the generating function. Notice that since the 0th generation is
defined to be 1 in the branching process, so the distribution of Z1 is the same as Y Is this correct?

Survival Probability (prob. of extinction)

Let Pe = P(Extinction) (survival probability = 1 - Pe). The extinction event becomes
∪∞

n=0{Zn = 0}
and

{Zn = 0} ⊂ {Zn+1 = 0} ⊂ {Zn+1 = 0}......

so the extinction event finally become
lim
n→∞

Zn = 0

and consequently the probability of extinction becomes a limiting probability

Pe = lim
n→∞

P(Zn = 0) = lim
n→∞

GZn
(0) = lim

n→∞
Gn(0) = lim

n→∞
G

(n)
1 (0)

Notice the last (n) means n times composition. The above result shows that we can get to the extinction
probability via studying G1, where G1 is the generating function of the reproduction law. Then we can
visualize the Gn(0) from the graph of Gy Two graph needed here and question about the graph
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Assume p0 = G1(0) > 0 and by convexity
• If G′(1) = E(Y ) > 1, Pe = limn→∞ Gn(0) < 1

• If G′(1) = E(Y ) < 1, Pe = 1

• If G′(1) = E(Y ) = 1 : If G′′(1) > 0, same graph as for G′(1) < 1; If G′′(1) = 0, V ar(y) = 0, then the
process is deterministic and Zn = 1 ∀n. 啥意思？？

Theorem 3. Let µ = E(Y ) and σ2 = V ar(Y ) where Y is the reproduction law. Then η, the probability
of extinction is the smallest non-negative root of s = GY (s) and

η = 1 , if µ < 1 or [µ = 1 and σ2 > 0]

η < 1 , if µ > 1

Remark 10. 该定理符合猜测：每一个 individual 都要生产出足够多的后代（µ > 1）以保证 population
延续（renew)，即使得不一定灭绝。
对于 discrete M.C 的介绍到此为止。之后自学 MCMC 和 HMM。

7. Exponential Distribution and Poisson Process

Definition 17. (Exponential distribution) X ∼ Exp(λ) The pdf of a expo. distributed r.v is

f(x) = λe−λx =⇒ E(X) =
1

λ
, V ar(X) =

1

λ2

F (X) = P(X ≤ x) =

∫ x

0

λe−λxdx = 1− e−λx

for x defined only on [0,∞). Its MGF is
ϕ(t) =

λ

λ− t

for t < λ and infinity for t ≥ λ, since the integral goes to infinity.

Proposition 8. (Memoryless property) In short

P(X > s+ t) |X > s) = P(X > t)

具体证明解释查看 302 note。该性质说明已知目前正在进行，这对下一个时刻是否还会进行没有任何影
响。

一个运算的例子

P(X > 5 |X > 2) = P(X > 3) = e−3λ

Remark 11. We can associate the exponential distribution as a measure of lifetime, from which we can
qualify a failure rate as follows.
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Set up the failure rate
Let X represent the life time of some object (physical life, battery life etc.). Then the probability that
the object can still be alive for another dt time given that it has already lived for t is

P(X ∈ [t, t+ dt] |X > t) =
P(X ∈ [t, t+ dt])

P(X > t)

=

∫ t+dt

t
f(u)du

1− F (t)

dt→0−→ f(t) dt

1− F (t)
= r(t) dt

where we define the failure rate function (or hazard rate function ) as

r(t) =
f(t)

1− F (t)

in this context where X is exponentially distributed r(t) = λ. So the failure rate function for an exponen-
tial r,v is constant which does not depend on time. This is another version of the non-memory property.
We can prove that the exponential r.v is the only real continuous memoryless r.v. Feb.14th note. For
discrete cases, the geometric distribution also has memoryless property.

Min. of two exponential r.v
Let X1 ∼ Expo(λ1) and X2 ∼ Expo(λ2). We define a new r,v X which is X = Min.(X1, X2). We are
interested in the prob. distribution of X so it is neat here to find the prob. of X > x, this is

P(X > x) = 1− FX(x) = P(X1 > x,X2 > x)

=︸︷︷︸
independent

P(X1 > x)P(X2 > x) = e−λ1xe−λ2x

= e−(λ1+λ2)x

This means, the new r.v X is also a exponetially distributed r.v with λ = λ1+λ2. Then we can generalize
this to the case of n expo. r.v which is
Proposition 9. Let X1, X2, ..., Xn are n independently r.v that follows Xi ∼ Exp(λi), i ∈ [1, n]. Then

X = min(X1, X2, ..., Xn) ∼ Exp(

n∑
i=1

λi)

例：现在有三个顾客，其中两个正在前台被服务。假设每个顾客的服务时间为随即变量且均服从指数分布

Exp(λ)。问：预计三个顾客都完成服务离开的时间是多长？

解：Time until the 1st customer leave is a r.v X = min(X1, X2) ∼ Exp(2λ) and E(X) = 1/2λ. The clock
then restart with the second customer fill the position and again the r.v is X. Finally the sole customer
left and the time as a r.v following X ′ ∼ Exp(λ). So the expected time is 1/2λ+ 1/2λ+ 1/λ.

Proposition 10. If X1 and X2 are independent and follows Xi ∼ Exp(λi). Then

P(X1 < X2) =
λ1

λ1 + λ2

Proof.
P(X1 < X2) =

∫ ∫
x1<x2

fX1(x1)fX2(x2)dx1dx2
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=

∫ ∞

0

λ2e
−λx dx2

∫ x2

0

λ1e
−λ1xdx1︸ ︷︷ ︸

=P(X1≤x2)=1−e−λ1x2

=

∫ ∞

0

λ2e
−λ2x2 dx2 −

∫ ∞

0

λ2e
−(λ1+λ2)x2dx2

= 1− λ2

λ1 + λ2
=

λ1

λ1 + λ2

Proposition 11. Let Z =
∑n

i=1 Xi where X and Y are expo. distributed r.v with parameter λi. Then
the probability density function is

fZ =

n∑
i=1

[
∏
j ̸=i

λj

λj − λi
] · λi · e−λit

then if we know all Xis are i.i.d with same λ, then

Z =

n∑
i=1

Xi ∼ Γ(n, λ)

with density function

f(t) = λe−λt (λt)
n−1

(n− 1)!
E(Z) =

n

λ
V ar(Z) =

n

λ2

Graph here needed to show the changes of parameter.

8. The Poisson Process

Two ways to describe the process:
• To generate the process via exponentially distributed r.v. as ”arrival time”
• Emphasizes on the properties of the process as counting process (i.e a stochastic process N (t) that

represents the total number of events by time t).
无论是哪一种解释的方式，λ 所谓的’rate‘是指单位的时间段内，有多少次事件发生。如果所给的信息
是关于 t 时长的 rate，而相关的问题是 t 时长的倍数的时间发生概率，则也要相应的扩大 rate 的倍数。
(a) The first description

A poisson process with rate λ is a counting process where the time between 2 event is Exp(λ). The
time until n event happens is

T =

n∑
i=1

Xi, Xi ∼ Exp(λ)

where all Xi are i.i.d. The λ here represent the rate of job completion (i.e the average job taks 1/λ
time unit /job, so rate fo job completion is 1/1/λ Why?)

Let the counting process to be N and

N(t) = # of jobs completed by time t, t ≥ 0
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We can conclude by intuition that
E(N(t)) = λt

PMF of N(t)
For n ≥ 1, consider {N(t) ≥ n} ≡ {

∑n
i=1 Xi ≤ t}. Both means n jobs are completed by t. We have

already derived the sum of exp. r.v follows Gamma distribution. Thus

P(N(t) ≥ n) = P(

n∑
i=1

Xi ≤ t)

Proof made up here.
Finally we get

P(N(t) = m) =
(λt)me−λt

m!
,m ≥ 0

which is the poisson distribution. So we conclude
Theorem 4. If N(t) is a poisson process then

N(t) ∼ Poisson(λt)

with mean λt and variance λt. This matches our anticipation.
Example

• E(S4 |N(1) = 2) = 1 + E(S2) = 1 + 2/λ

• E(N(4)−N(2) |N(1) = 3) = E(N(4)−N(2)) = E(N(4− 2)) = E(N(2)) = 2λ

对于以上问题可以直接画一个 t 的实轴分析。严谨证明在 latex 这个文件夹下的 pdf 里面
Proposition 12. • Independent Increments: If (s1, s2) and (t1, t2) are disjoint time interval, then

N(t2)−N(t1) and N(s2)−N(s1) are independent r.vs. (This can be generalized to more than 2
intervals)

• Stationary Increments: The difference between N(s) and N(s + t) is independent of s, in other
words, same as N(t).

(b) Second discrption:
Definition 18. (Poisson process) A counting process {N(t), t ≥ 0} is a poisson process of rate λ, if
it satisfies the following axioms:
• N(0) = 0
• It has independent increment
• P(N(t+ h)−N(t) = 1) = λh+ o(h)

• P(N(t+ h)−N(t) ≥ 2) = o(h), or equivalently, P(N(t+ h)−N(t) = 0) = 1− λh+ o(h)
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where we define the o(h) as the function f which satisfy

lim
h→0

f(h)

h
= 0

what is the function o(h) means?
The last axioms when we prove it, we can not treat N(t) as a r.v following poisson distribution since
that is what we are trying to show. We can only use theses axioms to prove it.
Remark 12. A consequence of this 2nd definition is that

N(s+ t)−N(s) ∼ Poisson(λt)

This result is useful to show the equivalent of two definition of poisson process. proof is in note March
2.
Theorem 5. We conclude from the above prove that two definition are equivalent that

{N(t), t ≥ 0} is a Poisson process of rate λ (by def. 2)

⇐⇒
N(t)is a counting process with iid inter arrival times ∼ Exp(λ)(by def. 1)

Proof needed from March 2

Theorem 6. (Superposition) Let {N1(t), t ≥ 0} and {N2(t), t ≥ 0} be two independent Poisson
process, with rates λ1 and λ2. Let N(t) = N1(t) + N2(t). Then N(t) is a poisson process of rate
λ1 + λ2.
Proof needed from note March 4.
Proposition 13. (Poisson Thining) Let {N(t), t ≥ 0} be a poisson process of rate λ and that its
events are independently labelled.: events are of either type 1 with prob. p or type 2 with porb. 1− p.
Let N1(t) = # type 1 event by time t and N2(t) similarly. Then N1 and N2 are independent poisson
process of rate λp and λ(1− p) respectively.
Proof as exercises, by showing the 5 axioms.

9. Conditional distribution of arrival time
We are trying to find the joint distribution of first n arrival time for the first n event, conditioning on
N (t) = n. Let S1, S2, ..., Sn i.i.d, which are in ascending ”order” be the r.v. for arrival time. (Do not
get confused with order stat. here s’s are not ordered statistics) Then

fS1,S2,...,Sn
(s1, s2, ..., sn | N (t) = n)

=

∫ ∞

t

λe−λs1λe−λ(s2−s1)...λe−λ(sn+1−sn) dsn+1

(λt)ne−λt/n!

to achieve this equality we need to convert the conditional event to be
P(S1 < s1, S2 < s2, ..., Sn < sn , sn < t < Sn+1)

P(N(t)) = n

where the denominator is exactly the poisson distribution r.v.. For the numerator, since we have fixed
the value of the n events as a ”known” value and we want to constrain the (n + 1)th event to happen
after t. So this can be treated as an integral w.r.t sn+1. After simplification we get

=
n!

tn

This is the CDF or the PDF? should be PDF right? Then with some proof and knowledge of ordered
statistics we can conclude:
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Theorem 7. The n i.i.d exponential r.v. S1, S2, ..., Sn conditioning on its corresponding poisson process
(appealing to the first interpretation of poisson process), have the same distribution of n i.i.d Uniform r.v
distributed on [0, t]. In other words, the n poisson events are uniformly distributed on time interval [0, t].
A proof of the ordered stat is needed. However refer to the files in Math303 to set up a new doc. for
order stat is necessary and important.
值得注意的是，只有在给定的条件下的 n 个泊松事件才是均匀分布的（在给出证明后会更加明显）。

Proposition 14. Let Ni(t) = # of type i events happed by time t. Then {Ni}ki=1 are independent poisson
r.v with E(Ni(t)) = λ

∫ t

0
Pi(s)ds where Pi(s) is defined as the probability distribution (cdf) of being type i

at time s. Proof Mar 9th
容易理解为什么是 CDF 而非 PDF。诚然时间是连续的，但是概率并非是关于时间的概率，在每个时刻，
我们都可以讨论该事件是何种类的概率。

对泊松过程的讨论到此为止。继续可以学习 non-homon. poisson process. 对于 inter-arrival time 不是指
数分布的情况，继续学习 renewal process 更新过程。

10. Continuous Time Marcov Chain (CTMC)
Definition 19. Let {X(t)}t≥0 be a series of r.v, which all taking values in discrete state space. We say
{X(t)}t≥0 is a continuous-time M.C if

P
(
X(s+ t) = j |X(s = i), X(u) = x(u)

)
= P(X(s+ t) = j |X(s) = i)

where u ∈ (0, s), ∀s, t ≥ 0 and ∀ state i, j.
Remark 13. In CTMC we always assume stationarity and time homogeneous:

• Stationarity: P(X(s+ t) = j |X(s) = i) for all time s. This generate the time-homo property.
• Time-Homo.: P(X(s+ t) = j |X(s) = i) = P(X(t) = j |X(0) = i), special case emphasizes on 0.

注意：此处的性质表明，转移概率与从哪一个 state 起始无关，与从哪一个时刻起始无关，但是与间隔时
长有关。因此，在 CTMC 中，某种程度上我们可以将转移概率表示为关于间隔时长的函数，即

Pij = Pij(t) = Pr(X(s+ t) = j |X(s) = i),∀ s ≥ 0, i, j ∈ S

Proposition 15. (Time memoryless of CTMC) Let CTMC is in state i at time a and let Ti be the
additional time (comparing to a) until CTMC leaves i, then

Ti ∼ Exp(vi)

where vi is different from the starting state of MC at time a. Proof Mar 13th
注意，逻辑是由于随机过程服从马尔科夫性质，所以必然等待时间是指数分布。反之亦然？

Remark 14. Ti must also be independent of the next state the MC jumps to, otherwise tye MC property
would be violated, because the past waiting in a state would entirely affects the next outcome. ?

Definition 20. A CTMC can be fully determined by two component:

• Ti ∼ Exp(vi), which characterize the waiting time at state i

• Pij , the transition probability form i to j, which must satisfy Pii = 0 and
∑

j Pij = 1.

Embeded chain?
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11. Example: Birth and Death process
(a) Model set up

Let {X(t)}t≥0 ∈ S =: N+ be series of r.v that represent the population size. The population can
only be affected by death or birth where both can be modeled by exponential distribution 个人理解，
此处是强行让两个 r.v服从指数分布，当然这也是合理的假设。注意由于 MC性质我们需要的是 total
waiting time 服从指数分布. Let λn be the birth rate of occurrence when population size is n and µn

be the death rate of occurrence. Given (λ0, λ1, ...), (µ0 = 0, µ1, µ2, ...). Then define this CTMC with
• v0 = λ0, vn = λn + µn

This is by time change in population = min(Exp(λn), Exp(µn)) ∼ Exp(λn + µn);

• P01 = 1, Pn,n+1(λn/(λn + µn)) and Pn,n−1(µn/(λn + µn))

this is by
P(Bith time < Death time) = λn

λn + µn

same for death one. 注意，transition probability 不都是由时间决定的，在此处模型里恰好可以而已。
在下面的 general case 会有讨论。

(b) Local Behavior of Birth & Death process
Recall the second interpretation of poisson process, which, in summary, is saying that in a give period
t and occurrence rate, the counts can only increase by 1, decrease by 1 or keep status quo.

X(t+ h)

P(X(t)) = 1− (λn + µn)h+ o(h)

P(X(t) + 1) = λnh+ o(h)

P(X(t)− 1) = µnh+ o(h)

and the probability of increasing and decreasing by 2 or more is o(h). Since the waiting time is ex-
ponentially distributed, so the occurrence of either birth or death can be modeled by poisson process
with the probability above. proof needed march 16.

Once we set up this, we can model the process with different type of birth and death rate. For
example, the population size is in linear growth with immigration, we can have

λn = nλ+ θ, n ≥ 1 µn = nµ, n ≥ 0

so we have

X(t+ h) =


X(t)− 1 w.p X(t)µh+ o(h)

X(t) + 1 w.p (X(t)λ+ θ)h+ o(h)

X(t) w.p 1−
(
X(t)(λ+ µ) + θ

)
h+ o(h)

(c) Find M(t) = E[X(t)]

基本思路是，由上述讨论的搭配的结论找的一个合适的 ODE，通过解 ODE 的到 M(t) 的解。这可
以理解因为上述结论中牵涉到非常小的 h，我们可以想到通过变形将其于导数形式相联系。推导过程
如下：

M(t+ h) = E[X(t+ h)] = EX(t)[E[X(t+ h) |P (X(t))]]

= E
[∑

P(X(t+ h) = i |X(t)) · i
]

注意，(b) 中的结论由证明可知，其已经是条件概率。通过计算可得

= E[X(t) + (X(t)(λ− µ) + θ)h+ o(h)]
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=⇒ M(t+ h)−M(t)

h
= M(t)(λ− µ) + θ + o(h)︸︷︷︸

goes to 0 as h→0

then we get a ODE
M ′(t) = M(t)(λ− µ) + θ

using integrating factor we find
1

λ− µ
ln[(λ− µ)M(t) + θ] = t+D

where D depends on the initial conditions. Here we assume M(0) = i and finally we get

M(t) = ie(λ−µ)t +
θ

λ− µ
(e(λ−µ)t − 1)

Remark 15. When λ > µ (i.e single birth rate > single death rate) then M(t) grows exponentially.
If λ < µ, then limt→∞ M(t) = θ

µ−λ and if λ = µ, then M(t) = θt+ i.

(d) More general case for determining the transition probability
上述例子是已经给定了出生和死亡发生的 rate 从而可以直接定义 transition probability。现在讨论更
general 的情况。
Let use the same notations as discussion above.
Proposition 16. Let qij = vi · pij. If we know qij, then we know both vi and pij.
Where qij is called the instantaneous transition rates. It means: Since vi is the rate that the transition
happens when the CTMC is in state i, and Pij is the probability of transiting to j form i, so qij is
thought to be the rate that the CTMC transit to j when it is in state i.

Proof.
vi = vi ·

∑
i̸=j

pij =
∑
i ̸=j

vipij =
∑
i ̸=j

qij

then
pij =

qij
vi

=
qij∑
i ̸=j qij

Remark 16. We will always assume, when state space is finite, the vi’s are small enough, so that the
probability a time interval [a, b] contains ∞ many transitions is 0. Otherwise, the process is called to
be explosive, and may not be defined for all time.

Lemma 1. As h → 0, Pii(h) = 1− vih+ o(h), which is equivalent to

lim
h→0

Pii(h)− Pii(0)

h
= lim

h→0

Pii(h)− 1

h
= −vi

and therefore
d

dh
Pii(h)

∣∣∣∣
h=0

= −vi

Lemma 2. For i ̸= j, Pij(h) = qijh+ o(h)

lim
h→0

Pij(h)− Pij(0)

h
= lim

h→0

Pij(h)

h
= qij

and therefore
d

dh
Pij(h)

∣∣∣∣
h=0

= qij
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proof Wed 19 Fri 20

These lemma leads to the Kolmogorov Backward equation.

Theorem 8. (Kolmogorov Backward equation)

P ′
ij(t) =

∑
k ̸=i

qikPkj(t)− viPij(t)

Theorem 9. (Kolmogorov forward equation)

P ′
ij(t) =

∑
k ̸=j

Pik(t)qkj − vjPij(t)

The transition probability in the above equation Pkj and Pik indicate what forward and backward
means.

Remark 17. The Kolmo. equations define a set of linear ODE’s that in theory are solved by eQt, the
matrix exponential. This can only be done explicitly in a few cases but the Kom. equations are also
useful in studying limiting behaviours and stationary distribution.

(e) Limiting probability in CTMC
Same as the discrete case, we are looking for the long-term behavior of the CTMC. The limiting
probability is defined, if exits, as

Pj = lim
t→∞

Pij(t), ∀i ∈ S

which means independent of the initial state.

Remark 18. If limt→∞ Pij(t) exists, then limt→∞ P ′
ij(t) = 0.

If we apply the kolmo. backward equation, it indicates that this is always true, so it does not provide
any additional information. If we apply the kolmo. forward equation, it suggests

1 vjPj =
∑
k ̸=j

Pkqkj 2
∑
j

Pj = 1

Equation 1 : LHS is vjPj , where vi is the rate leaving state j and Pj is the probability of being
in state j, so the product means the overall rate at which the CTMC leaves state j in the long run.
RHS, qkj = vkpkj is the rate at which the CTMC enter j form k and Pk is the probability of being
in state k in the long run, so sum up all the cases of k, it means the overall rate at which CTMC
enters state j in the long run. So it is

vjPj︸︷︷︸
rate out j

=
∑
k ̸=j

Pkqkj︸ ︷︷ ︸
rate in j

So in summary, in the long run the rate of joining state j is the same as the rate leaving state j, so
1 + 2 is a balanced equation (but not detailed balanced, coming later).

The two equation above can also be expressed in the following way. Let π = (P0,P1, ...) the limiting
prob. distribution and Q to be the intensity matrix, which is

Q =


−v1 q21 q31 ...

q12 −v2 q32 ...

q13 q23 −v3 ...

... ... ... −v4
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then 1 ≡ πQ = 0 (i.e more to one side the summation). Using these new stuff defined, the two
komlo. equations can be rewritten to be

P ′
ij(t) = (QP(t))ij (backward)

P ′
ij(t) = (P(t)Q)ij (forward)

where P(t) is defined as the matrix

P(t) =


P00(t) P01(t) P02(t) ...

P10(t) P11(t) P12(t) ...

P20(t) P21(t) P22(t) ...

... ... ... ...


(f) Stationary Distribution

Definition 21. The distribution π is said to be stationary in CTMC if

P(X(t) = y |X(0) ∼ π) = πy

where
P(X(t) = y |X(0) ∼ π) =

∑
x

P(X(0) = x |X(0) ∼ π) · P(X(t) = y |X(0) = x)

=
∑
x

πxPxy(t) = πy

The first line means, at t = 0 the distribution is π and after t the distribution is still π. The second
line can be thought of as a generalization of the total probability law in conditional probability. Detail
is as follows. The total probability law is

P(A) =
∑
i

P(A |Bi)P(Bi),
∪
i

Bi = Ω

then for the conditional probability we can have

P(A |B) =
∑
i

P(A |Bi)P(Bi |B),
∪
i

Bi = B

其实所谓条件只是限定了一个新的概率空间（或是事件域），进而将新的概率空间进行拆分。在拆分

之后欲使得每一个子条件获得取值则必须使其发生，即要乘以 P(Bi |B)。

Theorem 10. The distribution π is stationary if and only if πQ = 0.
Proof Lecture 31

Definition 22. For a CTMC {X(t)}t≥0, two states x, y ∈ S is communicate (x ↔ y) if Pxy(s) > 0 and
Pyx(s) > 0 for some s, t ≥ 0. The CTMC is said to be irreducible if there is only one communicating
class.
Remark 19. If x ↔ y, then Pxy(t) > 0 ∀t > 0.

Theorem 11. Let {X(t)}t≥0 be an irreducible CTMC, then
• There is no stationary distribution (i.e πQ = 0 does not have a valid solution) and

limt→∞
1
t

∫ t

0

1X(s)=yds = 1 almost surely goes to one for ∀ y ∈ S

• There is a unique stationary distribution and limt→∞
1
t

∫ t

0

1{X(s)=y}ds = πy

almost surely ∀ y ∈ S.
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The expression of the limit means the proportion the CTMC staying in state y, and 1 has the same
meaning as before. Proof omitted
Proposition 17. The two cases in theorem 11 can happen in the following cases:
• Alternative (1) happens when all states are transient or all states are null-recurrent.
• Alternative (2) happens when all states are positive recurrent, with mean recurrence time

− 1

Qyyπy
=

1

vyπy

(g) Time Reversibility
Definition 23. We say that X is time reversible if it has a stationary distribution π and

πiqij = πjqji

for ∀ states i and j.
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Questions

1. Does the initial prob. distribution have to be a row of the transition matrix?
2. For remark 3, we can keep multiplying the transition matrix because of time homo.?
3. For the definition of fi, we if we want to get back to i, there can be many way to achieve. So for

proposition 3 the second property, how do we define the fi?
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