Probability # %5 # 2 %4t

Probability Notes

1. Sample space

Definition: List of all possible outcomes of a random variable. Denoted by ().
* Notice: The order of the event matters. Lets say we flip a coin and get the situation HT and TH .
They are different since one is we get head first and another one is we get tail first

2. Events

Definition: The subset of sample space.
3. Event field & measurable space ¥ | = Ji] 5 =483,

For these domains, we want it first to include the empty set and entire set, and also be closed
under the operation (operator) intersection, union, complement and difference. What’s more,

we found that

o Intersection can be represented by complement and union (De Morgan’s Law) and ;

o Difference can be represented by complement and intersection which is
A-B=AnNB

These means, in the algorithm of set (or here particular to probability), Union and Complement are

the basic operator between sets. Therefore, the definition becomes

Theorem 1. Let ) be a sample space, .# denotes the subset (or a collection) of events, then if

e Jand Q € F

o All algorithm are closed under compliment and union, which is
oo
Ae F = A°e F, A,eF — UAE?
n=1

we say % is a valid domain of probability function and (§2,.%) is called measurable field (or measur-

able space).
For example, some domain can be .7 = {@, A, A, Q}.

** So, one thing need to be noticed is that the concept ’probability’ is actually based on .% but
not the sample space! 7 VAFfE %, sample space P T ELLSZ EE R T event field £ —NMEA
&L, MERILT event space .

(a) Some simple proposition



4. Permutation & Combination

Before introducing the permutation and combination, there are two basic principle of Counting:

o If a experiment need k steps to complete, and there are a, b, c,d, .... ways to finish each step respec-

tively, then there are a - b- ¢ - .... ways to achieve the experiments;

o If there are k different ways to complete one thing and there are also mi, ms, m3 ways in each ways,

then there are totally mi 4+ ms + ms3.... ways to achieve.
Then here become the permutation & combination:
(a) Permutation How many different order of arrangement are there for k objects taken from a n popu-

lation. The formula is

n!

The equation means, for the first position, we have n choice, second (n — 1) choices and so on.

(b) Combination Combination does not concerned about order of arrangement but just what is contained

inside a group. The formula is

<= (1) = oom

The formula can be divided into two part

. n! 1

 (n—k)! &
The first part is the permutation of k£ objects from n population and then divided by the full permu-
tation of k object so that there is no repeat. Because the full permutation 4 #E%] is the number

of different arrangement a given series of stuff can be.

(¢) Combination with replacement Taking an object k times form population with replacement to the

population after taking. The formula is simply

O — n+k—1 or n+k—1
(n+k—1)Yk — k n—1

Explanation: Let n space among n + 1 "’ illustrate the size n population and we are going to take
k times. Each time once we take that object, we add a ’o’ into the enumeration. Finally there will
be k circle and still n 4+ 1’|’ for which the first and last ’|’ are fixed. Thus it become a combination
of "position”— no matter we arrange the circles or the verticals the result will be the same because

once we fixed one of it, the other one will be arranged automatically.

(d) Multinomial theorem & Coefficient Multinomial simply means how many different division are pos-
sible for dividing n distinct terms into r distinct groups of respective sizes ni,ns,ns,...,n,. The

notation is

( . ) s
N1y N,y ey T nilnalns!...n,!



where n1 +ng +ng + ... + n, = n. **Notice: There is no order inside each group but there is order

between groups! Questions here
Example

How many different arrangement can be formed from the letters PEPPER?

6!
312!

First treat it to be 3 P and 3 other different letters. 6! is simply the full permutation. Then think we
fix the other 3 digit and for each fixed permutation, we have 3*2*1 repeated arrangement because of

3 same p. Then divided by 2*1 there comes the result.
(e) Inclusion and exclusion formula
i. Start from case of two

P(AUB) = P(A) + P(B) — P(AN B)

reason for deducting the intersection is because A and B maybe overlap each other and the

overlapped part is double counted;

ii. Case of three
P(AUBUC)=P(A)+P(B)+ P(C)—P(ANB)—P(ANC)—P(BUC)+ P(ANnBNC(C)

the first part, the summition of A, B and C is the "rough” total. Then reducing the intersection
of each two of A, B and C. But the problem is that we also reduce the part that belongs to
AN BNC, therefore we add it back.

then by analogy we can guess the general form of n size subset of the sample space which is

5. Binomial theorem

(z+y)" = Zn: (Z) byt

k=0
Proof

6. Axiom definition of probability space

Let © be the sample space, F be the event space/field (need to learn more about measurement). If for
any event A, a real-valued function P(A) satisfies:

o Axiom 10< P(A4)<1

o Axiom 2 P(Q) =1



e Axiom 3 If Ay, As, A3, ... Ay, ..... are mutually exclusive, then

(oo} (oo}
P JA)=> P4
i=1 i=1
Then we call the triple (2,.%, P) the Probability space. 4.1 3t I, 45 & T 7T 0 = ]

7. *Conditional Probability

The probability of an event under a given condition. Expression is
P(A|B)
means, the probability of event A given event B.

Then we need to prove it is a probability space, under the fixed condition given. The first two proof are

trivial, so we just focus on the third axiom. Prove,

P(UAMB):ZP(AHB)-

Proof By the definition of conditional probability, we have

PJ 41 B) = P“U?;l(g;} nB)

By distributive law, we can get

_ P(UZ,4inB)
N P(B)

here, since A; are all mutually exclusive, then we can know A; N B are all mutually exclusive. Then we

can write

— Zfil P(AiN B)
- P(B)

AﬂB
—Z
00

=D _P(4i | B)
i=1
(a) Properties of P(A|B)

« P(E|F)=1-P(E|F)

Prove: P(EcmF)_P(F)—P(EﬁF):

P(F) P(F)

P(E°|F) = P(E|F)
« P(E|F)+ P(F|E)

8. Bayes’s Theorem



(a) Total probability

Definition Let By, Bs, ..., B, are n partition, which mean they are mutually exclusive and union is

the whole set. If P(B;) > 0,i = 1,2,...,n,, then for any event A we have
P(A) = ZP(Bi)P(A|Bi)
i=1

Proof  Since

A=Ana=An(JB)=JAnB)
i=1 i=1
and all (AN B;)are mutually exclusive = then for probability they can be added together which is

n

P(A) = P( O(A NB:)) => P(ANB)

i1 i=1
**Notice:

e The simplest form of total probability is

e AcQ = U?:lBi
(b) Bayes’s Theorem
Definition Let By, Bo, ..., B, are n partition, then

P(B;)P(A | B)
>oi P(B;)P(A| B))

i=1

P(B;| A) =

Proof
Bayes’s formula is based on total probability,
P(Bi | A) = P(}B;EQ)A) _ P(Bi)PFZg | Bi)
then substitute the denominator by total probability
__ P(Bi)P(A| By)
- XL P(B)P(A| By)

Done.

(c) Sequential Bayes’s formula

Need to be made up

9. Odds of Event

The odds of event E, «, is defined as the ratio of probability of E and its compliment which is
_P(E) _ P(E)
" P(E) 1-P(E)

then by looking at the ratio and compare it with 1 we can know which of F and its compliment is more

likely to happen.



10. Independence of events
(a) Three ways to determine independence
P(B| A)=P(B)
P(A| B)=P(A)
P(ANnB)=P(A)P(B)

The proof of third one is the rearrangement of the conditional probability formula.

*Notice: the basic logic is that the formula P(A|B) = P;,?gga) is always true, and we know if A and

B are independent then P(A|B) = P(A). Also the third one can be extended for n events.

(b) Specify the difference and relationship with mutually exclusive events:

In short, the conclusion is

Mutually exclusive = Dependent
Independent — Not mutually exclusive =—> Have intersection

Mutually exclusive means there is no intersection of two event which
means when one event happens the other one can not happen at the same time. They can not
happen simultaneously. It also means one event has influence on the probability of the other one

happens.
But in order to understand independence, do not lay on Vinen diagram too much.

(¢) Conditional Independence

Two events A and B are said to be conditionally independent if

P(B| ANE) = P(B)
P(A| BNE) = P(A)
P(ANB | E)=P(A| E)P(B | E)
Notice:

¢ Conditional and unconditional independence does not imply each other

¢ Conditional independence given G doe not implies conditional independence given G°.

11. Axioms of being a Cumulative distribution function

Theorem 2. Let F denotes the cumulative distribution function.

e Monotone #H# F is an non-decreasing function defined on the whole R which is (—oco, +00),
or precisely

Vap,m0 € Rz <28 = F(11) < F(22)



12.

o Bounded A 5t  The value of F is bounded which is, Vo € R, 0 < F(z) < 1,

F(—o0) = lim F(z)=0, F(+o0)= lim F(z)=1

T——00 r——+00

o Right continuous %4  F(x) is a right continuous function, which is

lim F(x) = F(xg) or Fl(xo+0)=F(xp)

+
I—)ID

B EMNERFV B — A RBRFRARA S B (CDF) 098 Z 54,

Discrete Random Variable

Definition: The Random Variable is a function(or map) that maps a outcome in a sample space to

a numerical quantity. We use uppercase letter to denote a random variable.

X:0—R

So X is based on the sample space. That means the independent variable can be anything, it does not

matter it is a number or not but the value of X(w) must be a real number.

Definition: Discrete random variable is when the value taken on by the random variable is finite or from

a set of countably infinite set.

(a) Probability mass function (PMF)

e X is the random variable
e 0<p(zx)<1lforallxand) p(z)=1.

e The counterpart for continuous random variable is called probability density function (PDF).

(b) Cumulative distribution function (CDF)
Fla)=P(X >a)= Y P(X)
all z<a
Simply the accumulation of probability till a certain point. Notice it is a non-decreasing step function.
(c) Expectation of Discrect Random variable X

Denoted by E(X) & p, synonyms as the expectation of X, the mean/average of X which is

E(X)= ) «f(x)
all X
e The E(X) is the weighted sum of x value, the P(X) are weights.

e The expectation is the long-run average of x value taken on by the random variable X if the

experiments are to be repeated a large number of times.



To generalize the expectation, let g(X) be a real function of X, then the expectation of g(X) is

E(9(X)) = ) g(2)f(x)

all X

e The linear property of expectation is: let a,b be real constant, X, X1, Xo be random variables

and g1, g2 be real valued function, then we have
E(@X +b)=aE(X)+b
E(agi(X1) + bg2(X2)) = aE(g1(X1)) + bE(g2(X2))

(d) Variance and standard deviation of Discrete X

Variance of X is denoted by Vn which is

V(X)=B{(z — )’} = Y (¢ — n)*f(x)

all

V(X) = BE(X?) - [E(X)]

Proof:
V(X) = B{(z — n)?*} = B(2® = 2px + 1i*)
= E(2?) — 2uE(x) + p?
= B(x?) = 2E%(x) + E*(z)
= B(z%) — F*(z)
Done.

Standard deviation of X is

Similar to Expectation, f(z) is the weight.

The linearity of variance is
V(aX +b) = a*V(X)

Proof is in Chapter4.
13. Typical discrete distribution
(a) Binomial distribution —# 4% : X ~ Bin(n,p)

Random variable X is the number of success event A happens in n times Bernoulli experiments. Let

the probability of event A happens be p, then
n k n—k
Pex =1 = () (1=

The cumulative probability function is

F(X) = ,; (}) =



The expectation and variance are

E(Y) =np, Var(X) =np(1 —p)
proof needed.
Negative binomial distribution #i =5 5% : X ~ Neg.Bin.(n,p)

Let the random variable X be the number of experiments when the rth event A happen. The PMF
is

k—1
r—1

P(X =k) = ( >pr f (1= p)Er

The CPF is
Feo =3 (F T ea-per
= r_1 p p
k=r
Starting from r is because event A has already happened 7 times so the total number of experiments
should be at least . The expectation and variance are
1 —
BX) =", Var(x) = "0L2P)
p p

proof needed. One thing should be noticed here is, the last trail/experiment, event A must happen.
Always, r is fixed, so r — 1 is also fixed.
Actually, we want the event A to be happened r times (this is our purpose). So we stop repeating

experiment once we get the number of happening of A which is r. B —/F3]| % r k& A 121E 5%,
Geometric distribution JUFT47: X' ~ Geom.(p)

Used when our interest is the probability of sth happens. Let the random variable X be the
number of experiments that have been executed till we see the first success of event A. Then X is a

Geometric random variable with parameter p, the probability of event A happens. The PMF is
P(X = k) =p(1—p)*!

the CPF is

proof needed.

Hyper-geometric distribution # JUT45H: X ~ Hypergeom(N,n,m)

We have a small set of totally IV objects, m of them are one kind and other N —m are another kind.
A total of #n are drawn form N without replacement. The distribution has three parameter which
are

X «~ Hypergeom(N,n,m)



It means the probability that k& out of n are type A. The probability mass function is

P(Xk)m((gz):m

where, r = min{m,n}.

The cumulative probability function is

proof needed.

Poisson distribution /A9 : X ~ Poisson(\)

There are three conditions must be satisfied when using the poisson process:
e n is large
e p is small

e np = )\ is a constant

i. Poisson limit
The poisson limit is typically a approximation of binomial distribution under the above three
conditions are satisfied.

Suppose X is a binomial random variable, where

P(X =k) = (Z)pk(l )"k k=0,1, .., 7

If n — oo and p — 0 in such a way that A = np remains constant, then

e " (np)*

: A : T\ ke _ o oyn—k _
lim P(X =k)= lim (k>p (1-p) ]

n—00,p—0,np=AX n—00,p—0,np=X\
proof needed (technical point here is the definition of e” which is lim, oo (1 + )" = €”)
ii. Poisson distribution and Poisson process

The probability mass function of poisson distribution is just the Poisson limit.

*The proof is on page227 of Book An introduction to Mathematical statistics and Its Application

which is simply checking whether the function satisfy the axioms of being a probability function.

another way to approach the poisson distribution is needed, which is in terms of average rate.



14. Continuous distribution

(a) Normal distribution E&45H: X ~ N(u, 0?)
Normal distribution has two parameter, one is p and one is 0. u is called 4% & %4 and o is called
REHHE. BE p, PREFTHIHREGEERAREARLESIMBRAE, ERE o BILm-FRE
EART——0c WRME/HF, &IDNARE. A5, pto £EMBAEE (inflection point).

e Probability density function

¢ Cumulative distribution function

1 ® t—p)?
F(z) = / e T dt

210 J_o

« Expectation:
E(X)=pn

Proof. Let X ~ N(u,0?). Then by Theorem 3 we have U = 2=£ ~ N(0, 1), the Standard normal

o

distribution. Then, by definition of expectation of continuous variable we have

1 > Uv2
E(U):E/ u-e zdu

Obviously the expectation is a odd function, so the integral equals zero. Then we have

T —p
g

U =

— T=pu+ou
Then operate the expectation on both side we get

E(X)=E(u+ou) — E(X)=p+0oB(u)=p

« Variance:

Var(X) = o?
Proof. Similarly, let X and U be such normal distribution. Then
Var(U) = E(U?) — E*(U)

since E2(U) = 0, then
Var(U) = E(U?)

By the definition of expectation, we have

1 e u?
EU?) = —%/ u?-e T du



then Integral by substitution. Let

1
—§u2:y = —udu=dx

- ([

i. Standard normal distribution: X ~ N(0,1)

Specifically, one of the normal distribution, X ~ N(0,1) is called Standard normal distribu-

tion.

Theorem 3. If X ~ N(u,0?), then U = == ~ N(0,1)
Proof Let Fx(x)andFy(u) denotes the CDF of random variable X and U. Then by the defini-
tion of CDF we can get

T —p
g

Fu(u) = P(U <u) = P( <wu) = =P <pu+ou)=Fx(u+ou)

Since the CDF are continuous and differentiable every where, then the PDF of U is

d d
pu(u) = @]:U(u) = %}"X(M +ou)

1 _(=—pw?

e 22 -0
V2mo 0

= px(utou) -0 =

plug into x = p + owu, finally we get

which is exactly the PDF of standard normal distribution.
FREACIE S A 69 B 892 T A RATEES A F R T B0 E,
ii. 3 o law for normal distribution

68.26% ~ 95.45% ~ 99.73%, each with a o separation.

(b) Uniform distribution ¥4 5% : X ~ Uni(x, )
The two parameter are the lower and upper bound of the PDF of uniform distribution. The PDF

are the same every where. The PDF is

1
» T € o Bl
plz) = F-a
0, otherwise
the CDF is
0, x € (—00,0q]
T —
F(z) = o x € [a, B)

, z € [f,00)



An example for uniform distribution is, the abrasion level (BE4R42E ) of tires (#}& ). Since the
probability of being worn are the same to all the points on the tire. So, the position on the tire worn

follows uniform distribution, which is X ~ (0, 27r).

« Expectation

a+p

E =
(2) = 25
Proof By defination of expectation
p 1 B2 —a® a+p
E X pr— fr—
(X) /x B—a 2B-a) 2
e Variance T )2
—«

V =

ar(X) 2

Proof By definition of variance,

a?+a- 2 (- —a)?
Var(X) = B(X?) - E*(X) = ©° 3/3+ﬂ _ 4/3):(512)

(c) Exponential distribution #5# 4$#: X ~ Expone(\)
Exponential distribution is related to Poisson distribution. It depicts the time between two consecu-
tive happening events. Thus, let X be the random variable indicating the time between two events
in the poisson distribution, then

e Probability density function

p(x

¢ Cumulative distribution function

) =
1—e ™ >0
F(m):{

0, <0
/Ry HA RIS AH, BT RRRIERLZK BARFTEAT “Fo” o,
o« Expectation )
EX) = X
Proof Simply take the integral of its pdf we get

E(X) = / z-Ae Mdr = /\/ re Mdx
0 0

integral by parts, then




e Variance

1
Var(X) = 2

Proof By definition of variance

ii.

Var(X) = E(X?) - E(X)* = B(X?) — %

> 1 2 1 1
2 -
—/0 7 e Mdx st AR VARD Y

. Interpret exponential distribution from Poission distribution

Let’s say X ~ Poission()\). We want to generate the expression of exponential distribution

under the Poisson distribution. Thus,
P (X >t) = P(Zero event happens in length of time t)

or more formally, let N ~ Poission(\), then

P(X > 1) = P(N(t) = 0) = W)Ooilff” _

— P(X<t)=1-P(X>t)=1—-e* = Fx(x)
then take the derivative of the CDF to get the PDF. {E/3i2 & 692, AL £ e d9RH R RA -
Bt 8 REAR A t 4EA scalar KA A8 BB E] K E 49 rate, B h M IAAN LA B IAAE IR
09 KA AT AT B8 A 0990 5 5 1) KB RE ML,
Memory-less property of exponential distribution 3% 5 69 £t ek
Theorem 4. Let the random variable X ~ Exzpon(A), then for any s > 0 and ¢ > 0, we have

PX>s+t]| X >s)=P(X >t)

EXEgeXL A 2 X AEMHFRGEREFS, FLRAIEH A, N, wRECIHEEAT s i
KARAF, WERERAGER t 528G RKE s LX, 8ETAEZ t FEHEAS
HAEmE, HmE PRI, (A EZER s HREHPAG X >s 9RRAAERNT
s BRSEANEAXT S 69EFN, HARLEMMEZOLA T —NELBETS),

Proof. Since X flows exponential distribution, then P(X > s) = e~** for which s > 0. Also

obviously
{(X>s+t}C{X>s} = {X>s+t}nN{X>s}={X>s+1}

then by definition of conditional probability

{X >s+tn{X > s})
P(X >s)

P
P(X>s4+t|X>s)=

P(X >s+t) et
BT S I =P(X >t)




(d) Gamma distribution % 5% : X ~ Gamma(a, \)

i. Gamma Function The function of form
I'(a) :/ e " dx
0

is called gamma function. It has two main properties:

T =1L T(}) = VA

Need to be made up The proof of the % one need to use Gaussian Error Function

e I'(a+1) = al'(a), easy to be prove by integral by parts. Then by induction we have

T(a+1) =al'(a) =n!

ii. Gamma distribution

- PDF

A% a1,
. (67 x >O
o) T e , x>

0, <0

p(z) =

where the parameter « is called the #:k £4% and the other parameter \ is called R 54k,
« Expectation
a
Ex)=2
(x)=1

Proof. By definition of expectation we have

oo )\a )\a oo
E(x :/ x - cxtT e gy = / 2% e M dy
= f " @ @) Jy

it looks similar to the expression of gamma function, so by substitution, let Ax = w, then

Adr = du and z = ¥, plug in we get

ACE oo [0
R T
0

() Aatl
1 a-T'la) «
= . F 1 = = —
fa o Tt =ra =X
O
e Variance
!
Var(X) = 2

The proof is exactly the same as the expectation, omitted here.
iii. Two special cases for gamma distribution
e When a =1, the gamma distribution is the exponential distribution

e When a = 3, A = %, we call this kind of gamma distribution the Chi square distribution
under the degree of freedom n, FF A HE A n 49-F7 4H ., Need to be made up



iv. Interpretation of Gamma distribution

Definition: Let n be the number of consecutive events happens which follows Poisson distribu-
tion, or simply the Poisson process. And by definition, the time between two consecutive events
happen follows exponential distribution. Then, we define (can prove) the time needed to

wait until the nth event happens follows Gamma distribution.

a proof from Poisson process is needed
IR AR (5F) — HKEHHF — Gamma 5 A
(e) Beta distribution: X ~ Be(a,b)
i. Beta function The function in form
1
B(a,b) = / 27U (1—2) e
0
is called Beta function, it has the following properties:
» B(a,b) = B(b,a)
Proof. Let y =1 — x, then
0 1
B(a,b) = / L—y oyt (-Ddy = / (1-y'-y*" - dy=B(b,a)
1 0
simply integral by substitution O

e The relationship between Beta and Gamma function is

I'(a) - T'(b
B(a,b) = r((c)z+z§))
Proof.
proof need to be made up (need Jacobi determinate)
O
« PDF
plx) = II:((Z)—IE(I;)) 2T 1-a) T 0<a <

0, otherwise

where both a and b are shape parameter 3Kk £#4X. An important property is, when a = b,

then density function is symmetric by = = % (easy to check).

o« Expectation

Proof. Proof needed O



e Variance
ab

(a+b)?(a+b+1)
Proof. Proof needed O

Var(X) =

ii. Interpretation of Beta distribution

It can be used as a distribution of probability of an event. More need to be made up!!!

15. Multi-dimensional random variable & its distribution

Definition 0.1. Multi-dimensional random variable If X (w), Xa(w), ..., X,,(w) are n random variables

defined on the same sample space @ = {w}, then we call
X(w) = (X1 (w), Xa(w), ..., Xn(w))

the n-dimensional random variable or random vector.

*Notice: The key point is that the multi-dimension rv. is defined on the smae sample space. If the random
variable is defined on different sample space, let’s say Q1 & a3, then we can only discuss it based on the

product space Q1 x Qs = {(wy,ws) |Jwy € 1, we € N}

Definition 0.2. Joint distribution function Let x1,xs,...,z, € R, then the probability of simultane-
ously happening events {X; < 21}, {X2 < 22}, ..., {Xn < z,}

F(x1,22,....,2n) = P(X1 <21, Xo <22, ..., X;, <)
is called the Joint distribution function.

Theorem 5. Properties of F(x,y)
o Monotone £t F(z,y) 23 x, y ZiFHIER, B,

1 <xy = F(x1,y) < F(a2,y), & y1 <y2 = F(x,31) < F(z,y2)

o Boundary A% Forany z&y, 0 < F(z,y) <1, and
Tr— — 00
F(z,—o0) = lim F(z,y)=0

Yy——00
F(oo,00) = lim F(z,y)=1
T—00,Y—>00
e Right continuous #i#% 4  For both variable are right continuous

Fz+0,y) = F(z,y)

F(z,y+0) = F(X,y)



o Non-negative 3E it Foranya <b, c<d€R,
Pla<z<be<y<d)=F(b,d) — F(a,d) — F(b,c)— F(a,c) >0

the above line can be expressed as a domain of double integral/x-y plane

we can think the domain as the two dimension xy plane and the upper right corner is the position
of any point (z,y). Then the CDF is just including and excluding the area to make sure not double
counting.

Some proof may be needed
(a) Joint distribution random variable (2 dimensional)

Definition 0.3. (Discrete case) The probability mass function for joint distribution is

pij ZP(X:xi,Y:yj), i,jz 1,2,...

Definition 0.4. (Continuous case) The cumulative distribution function (CDF) of joint distribution

F(r,y) = /; /yoo p(u,v) dudv

where p is a non-negative function. Then, we call the function

1S

2

0zdy
the probability density function of joint distribution.

p(x,y) = F(:l},y)

Definition 0.5. Marginal mass function For random variable, their one mmf is

j=1
and similar for Y is

S P(X +a,Y =y;) = PY =y)
i=1

Definition 0.6. Marginal density function Similarly as in the discrete case, mdf is

px(z) = /oo p(z,y)dy

— 00
oo
)= [ ey
— 00
May need some proof and reference to here Notice to clear the boundary of integration. X|i# # 42 %

LR



(b)

Independence between random variables % & Jd] J 4

Definition 0.7. Let n dimensional random vector (X7, X3, ..., X;,) has the joint cumulative function

F(z1,x9,...,2y) and let F;(x1) is the marginal cumulative function of X;. Then, if

F(x1,x0,...,xy) = HFl(xl)
the the random variables X, Xo, ..., X,, are independent.

Then, we can get a more useful conclusion: For simplicity, consider the case with only 2 random
variable X, y, taking twice derivative on both side of the equation (CDF), for x first and then y (the

order does not matter need to know in what cases the order of derivative does not matter). We get

o Fe) = = (Fxlo) ) = 2 Fx(o) = 5-Fx(o) - Felo) = fx(e) - ()
The for Y we have
0? 0

G?@F(m’y) = fx(z) - @Fy(y) = fx(z) fy(y)
which is exactly the same as
fxy(zy) = fx(@)- fr(y)
so we can use this to check the independence between variables. Bf, A FR%5 E RR AR ETHLSE
AIRZ: WwRZIATEERIHE—H, TE2HEMERRE T XA intersection 9 E —#, £ 5
PRt AT RN B2 CDF. AWK NA CDF Rk abt, #milidieFRa% s sshng
T ER A 5 F A,

Properties of Expectation of joint distribution

e if X and Y are independent, then E(X +Y) = E(X) + E(Y) proof needed
o If X and Y are independent, then E(XY) = E(X) - E(Y) proof needed

o if X and Y are independent, then Var(X £Y) = Var(X) £ Var(Y) proof needed

Covariance in Joint distribution #-7 %
Definition 0.8. Let (X,Y) be a two dimensional random vector. If the expectation E[(X —
E(X))(Y — E(Y))] exists, then we call it the Covariance of X and Y, or the #8% (. ) 4E,
which is
Cou(X,Y)=E[(X — E(X))(Y — E(Y))]
It depicts the correlation level #8442 of the random variables. It has the following characteris-
tics:
e Cov(X,Y) > 0, X and Y are positively related; Bf & B i 38 i R DA H — (x,y) 2F T
—Z &R
o Cov(X,Y) < 0, X and Y are negatively related; RF A & 7R F 7 #1324 = (x,y)
AT = H IR



e Cov(X,Y) = 0, X and Y are either not related or there is a non-linear relation between the

ii.

random variables.JE & % A A LIEA P178
Properties
o Cov(X,Y)=E(XY)— E(X)E(Y) proof needed

o If X and Y are independent, then Cov(X,Y) =0. RZ IR, E&FHmi 5L EZHE ELE
SRA—HIMX LI,

o Var(X 1Y) =Var(X)+ Var(Y) £2Cov(X,Y) proof needed.
2% cov(X,)Y) EfFE5 Var(X + Y) #9E fi F4aF,

Then generalize it to n dimensional cases,

Var(i a; X;) = i a?Var(X;) + 22 ZKjaiajCov(Xi, X;)
i=1 i=1

e Cou(X,Y) = Cou(Y,X). Travail by the definition of covariance.

o Cou(X,a) =0 where a is a constant. proof needed.

o Cou(X+Y,Z)=Cov(X,Z)+ Couv(Y, Z) proof needed.

L ov

(X,
(
o Cov(aX,bY) = abCov(X,Y) proof needed.
(
(X, X) = Var(X) proof needed.
(

e Cov(3 o 1X17ZJ ROEDS 12] 1 Cov(X3,Yj)

Correlation coefficient 48 % A #
Wdr 2 %45, dak (m), # (s) ete. A HRFEALGF R, I NFTA9HA correlation coefficient.

Definition 0.9. Let (X,Y) be a two dimensional random vector, and Var(X) = 0% > 0,
Var(Y) = 0% > 0, then we call

Cov(X Y) _ Cov(X,Y)
VVar(X) - Var(Y Y) ox-oy

Corr(X,Y)=p(X,Y) =

the (linear) correlation Coefficient (£/E) 48X &,
Another interpretation of correlation coefficient is, it is the Covariance of the standardized

random variable, which is: Let the expectation of X and Y are px and py respectively, and

X — Y —
P'X, Vv — Hy
ox 0y

X* =

then we have

(X—MX Y_,UY) _ Cov(X,Y)

Cov(X*,Y*)=Cov
ox gy OxXO0y

=p(X,Y)

some more consideration is needed here.

The thing it suggests more than Covariance is if the correlation coefficient = +1, it means

X and Y are perfect linearly related (perfect positive or negative related).



(e) Conditional distribution and expectation &5 5 &4 %2

i.

ii.

Conditional distribution for discrete cases
First, define the joint distribution (X,Y) to be

pij = P(X = 2;,Y =y;)
then, the definition goes here

Definition 0.10. For every y; that makes P(Y =y;) =p.; = > oo, pij > 0, we call

P(X =x;,Y =vy;) _Pij
P(Yzyj) Di-

the conditional distribution (PMF) of X under the given Y = y;. Same for Y given X = z,.

Definition 0.11. The CDF of X given Y=y; is defined as

F(aly:) = Z P(zily +j) = Z Dilj

z; <z z;<x

same for Y given X.
EREENE, REHSFART—A, BERIFART SN, FEREEEL., REFIAT X
TUASKBAGS D,
Conditional distribution for continuous cases
The case for continuous is different. Since for each point the probability is 0. So it is reasonable

to take the limit for a given value of y. First give the definition.

Definition 0.12. For any y that makes py (y) > 0, the conditional distribution function and

conditional density function under given x are

Faly = [ 2000, ey = 220

Proof. By the definition of conditional probability,
P(X<a|Y=y)=lmP(X<z|y<¥ <yth)
—

oy P Sz |ysY <yth)
a0 Ply<Y <y+h)

we apply as small trick here

/ i,o { % / " o) do }du

y
1 ry+th
h/y py (v) dv

= lim
h—0




iii.

the reason for multiplying by % is to construct a scenario to use mean value theorem of
calculus. Then, if py (y) and p(x,y) are both continuous at y (The condition must satisfy to use

mean value theorem), we can get

y+h
}lzlg%)h/ p(u,v)dv = hm —h-plu,h') = p(u,y)

where h' € [y, y + h] and when h is approaching 0, h’ is exactly the point y;

A 1 ,
flzli%h/y py(v)dU:,lllL%E'h'py(h):py(y)
finally combine them together we get the statement in definition. O

Conditional expectation #1142

Definition 0.13. If the expectation of conditional distribution exists, it is called the conditional

expectation. It is defined as

Z 2, P(X =2;]Y =y), (XY) are two dimensional discrete random vector,

EX|Y =y) = o0
/ ap(x|y)de , (X,Y) are two dimensional continuous random vector.

— 00

The case for Y given x is the same.

{392 2 Xgiven Y (9T AT X9 FMFRZRXT Y 69 (/% #—F E(X|Y =v)
AFTUER E(X|Y =y)=9g(y), IHEREZRGFELTARER— AL Z

Theorem 6. Expectation by conditioning (Z##Z A X) Let (X,Y) be a two dimensional

random vector and E(X) exists, then

E(X)=Ey(Ex|y(X|Y))

Proof. (For continuous case only) Set up the notation. Let p(z,y) be the joint density distribution

B0 = [ apx@do= [ ([ pla)dyis

— 00

/ / p(z,y) dz dy

by definition of conditional probability we have

/ / p(z1y) - py(y) dz dy
=/mm@ﬁ/z <mmm}@

the stuff within brace is exactly the Ex|y (X |Y). Then substitute it by a random variable/

function. Then

function of y ¢g(y). Then

=/wmwmﬂm@=Ewwn=mmxuw

—00
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