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Notations: We use upper case to represent randomness, lower case to be
represent a single realization. We use bold to represent a vector (i.e dimension
≥ 2) and non-bold for a one-dimensional variable.

1 asymptotic inference

Several definition & concepts before moving on are

• Probability Space (Ω, F , P): Where Ω is the Sample space, F is the σ-
field, and (Ω, F ) is a measurable space. P is the probability measure
(Refer to Mathematical Statistics, Jun Shao for detail).

• Random vector: The random vector is a map

X : Ω→ Rp (1)

If p = 1, then X is a random variable.

Let Xn ∼ Fn, n = 1,2,..,n be a sequence of r.var or vect. We wish to define
convergence of Xn to X0 (i.e the convergence of sequence of r.v).

1.1 Pointwise Convergence

1.1 definition. Let Xn ne a sequence of random variable. If
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1.2. almost sure convergence

lim
n→∞

Xn(ω) = X0(ω), ∀ω ∈ Ω (2)

then we say Xn converges to X0 pointwisely.

• This type of convergence is very strong. At every point of ω ∈ Ω it
converges so difficult to obtain.

• Not necessary to have in order to get a good approximation for the
probability behavior of Xn.

1.2 Almost Sure Convergence

A.s convergence also called

• ”Convergence with probability 1”

• ”Convergence almost everyshere”

1.2 definition. (A.S convergence) Let Xn, n = 0,1,2, ... are defined on the
same probability space (Ω, F , P ). We say Xn converges almost surely to X0
if

P ( lim
n→∞

Xn = X0) = 1 (3)

Equivalently, ∃ a set A, with P (A) = 1?, such that

lim
n→∞

Xn(ω) = X0(ω), ∀ω ∈ A

Equivalently, Xn → X0 a.s if

lim
n→∞

P (
∣∣∣Xm − X0

∣∣∣ < ε, ∀m ≥ n) = 1, ∀ε > 0 (4)

Proof. (Equivalence of definition (3) and (4)) Make up

1.3 example. (a.s convergence) Make up later

1.3 Convergence in Probability

1.4 definition. (Converges in probability) Let Xn, n = 0, 1, 2, ... be defined on
the same probability space (Ω, F , P ). If

lim
n→∞

P (
∣∣∣Xn − X0

∣∣∣ < ε) = 1 (5)

notation Xn →p X0, then we say Xn converges in probability to X0.
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1. asymptotic inference

1.4 Convergence in Distribution

1.5 definition. (Convergence in Distribution) Let Xn be sequence of r.v. which
are NOT necessarily defined on the same probability space. If

lim
n→∞

Fn(x) = F0(x) (6)

for all points x at which F0 is continuous, then we say Xn →d X0

The ”Different probability space” means the Ω can be different.

1.5 Relationship among Modes of Convergence

1.6 proposition. Convergence is preserved by continuous functions. Let g(x) be a
continuous function. Then

Xn →a.s X0 =⇒ g(Xn)→a.s g(X0)

Xn →p X0 =⇒ g(Xn)→p g(X0)

Xn →d X0 =⇒ g(Xn)→d g(X0)

Type =⇒ A.S In Probability In Distribution

Almost Surely Yes Yes Yes
In Probability No Yes Yes

In Distribution No No Yes
In Distribution to C (constant) No Yes Yes

Table 1: Relationship between Modes of Convergence

1.7 proposition. Let Xn =


X1,n
X2,n
...

Xm,n

 and X0 =


X1,0
X2,0
...

Xm,0

. Then

Xi,n →a.s Xi,0 (i = 1, ..., m) =⇒ Xn →a.s X0

Xi,n →p Xi,0 (i = 1, ..., m) =⇒ Xn →p X0

Xi,n →d Xi,0 (i = 1, ..., m) 6=⇒ Xn →d X0

Exmples make up

1.8 theorem. (Slutzky’s Theorem) If Xn →d X0 and Yn →p c, then

Xn + Yn → X0 + c
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1.5. relationship among modes of convergence

XnYn →d cX0

Proof. Makeup

1.9 theorem. (Weak Law of Large Number) Suppose that X1, X2, ... are i.i.d with
E(|Xi |) < ∞ and E(Xi) = µ. Then

Xn =
1
n

n∑
j=1

Xj →p µ (7)

1.10 theorem. (Strong Law of Large Number) Suppose that X1, X2, ... are i.i.d
with E(|Xi |) < ∞ and E(Xi) = µ. Then

Xn =
1
n

n∑
j=1

Xj →a.s µ (8)

1.11 theorem. (Central Limit Theorem)(Standard Version) Suppose X1, ..., Xn, ...
are i.i.d with E(Xi) = µ and Var(Xi) = σ2 < ∞, Then

√
n(Xn − µ)

σ
→d N(0, 1) (9)

1.12 theorem. (Central Limit Theorem for random Vectors)(Standard Version)

Suppose X1, ...,Xn, ... are i.i.d with µ =


E(X1)
...

E(Xp)

 and Var(Xi) = σ2
i < ∞, i =

1, 2, ..., p, Then √
n(Xn − µ) →d N(0,Σ) (10)

Equivalently √
nΣ−1/2(Xn − µ) →d N(0, I) (11)

where

Σ−1/2 =
p∑

j=1

λ
−1/2
j aja

′
j

here λj are the eigenvalues of Σ and aj are those corresponding eigenvectors.

Property of the covariance matrix Σ:

1. Σ is symmetric, positive definite (i.e one of equivalent statement is that
for real symmetric matrix A, ∃C which is real and invertible s.t A = CC′).
Due to the existence of C, we define the Σ−1/2 to be

Σ = CC′ → Σ−1/2 = C
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1. asymptotic inference

2. Further more, Σ−1/2 =
p∑

j=1
λ
−1/2
j aja′j is called the Spectral Decomposition

of Σ which is not unique since let Q be any orthogonal matrix

Σ = CC′ = CQQ−1C′ = CQQ′C′︸                     ︷︷                     ︸
orthogonal so QT=Q′

= (CQ)(CQ)′

so CQ is also a solution. Also it can be verified taht Σ−1/2 is also symmet-
ric Makeup.

3. From (10) to (11) involving the matrix operation. Prove it in a gen-
eral way. The general conclusion is if vector X ∼ FX(µ,Σ), then let A ∈
M(R, n × n), then

AX ∼ FAX(AX,AΣA′)

the operation here involves Var(AX) = AVar(X)A′. Simple proof here is

Var(AX) = E[(A(X − µ))(A(X − µ))′]

= E[(A(X − µ))((X − µ)′A′)] = AE[((X − µ))((X − µ)′)]A′

= AΣA′

Notice the CLT requires the second moment constrains (i.e the finite
variance). In practice, usually when we have n ≥ 15 we can confidently imply
CLT.

1.13 theorem. (Chevychev’s Inequality) Let E(X) = µ. Then

P (
∣∣∣X − µ∣∣∣ < ε) ≥ 1 − Var(X)

ε2

There are other versions of this inequality and the one stated here is not
the standard one. The WLLN is proved by this inequality. However the SLLN
is harder to prove.

1.14 theorem. (Delta Method for Univariate) Suppose that
√
n(Xn − µ) →d

N(0, σ2) where E(Xi) = µ and Var(Xi) = σ2 (not necessarily i.i.d) Let g(t) be a
continuously differentiable function at µ. Then

√
n[g(Xn) − g(µ)]→d N(0, [g ′(µ)]2σ2) (12)

Notice E(g(X)) , g(E(X)).

1.15 theorem. (Delta Method for Multivariate) Suppose that
√
n(Xn − µ) →d

N(0,Σ). Let g(t) be a continuously differentiable function at µ. Then
√
n[g(Xn) − g(µ)]→d N(0,∇g(µ)′Σ∇g(µ)) (13)
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where ∇g(t) is the gradient of g which is

∇g(t) =
(
∂g(t)
∂tj

)
=


∂g(t)
∂t1
∂g(t)
∂t2
...

∂g(t)
∂tp


2 multinomial distribution

3 introduction to information theory

3.1 Entropy

3.1 definition. (Entropy) Let X be a random vector with pmf f (xi) = P(X = xi).
Then the entropy of X is defined as

H(X) = −
∑

f (xi) log(f (xi)) = −E{log(f (X))} (14)

The negative sign before the summation is to make the entropy positive,
since f (xi) is always between 0 and 1. Entropy is interpreted as measure of
randomness or uncertainty. Some comments:

• Entropy does not depend on the value of random variable. It can be seen
that the value of X, which is xi only appear in the density function. So
what matters is the probability. Compare with other characteristics of r.v
like covariance, mean etc. all to do with the value of random variable.

• Let the r.v can only take two possible outcomes and one with probability
p and one with 1 − p. Then we take derivative w.r.t p and find at p = 1/2
the entropy is maximized. That is, when two cases are equally likely,
entropy is maximized. This can be extended to more than two possible
outcomes.

• Bigger difference between those probability, bigger entropy.

Exercises: Suppose that X can take n possible values with probabilities p1, p2, ..., pn.
Show that in this case H(X) is maximized when pi = 1/n for all i

3.2 Differential Entropy

3.2 definition. Let X be a continuous random vector with density f (x). THe
differential ecntropy of X is defined as

H(X) = −E{log(f (X))} = −
∫

...

∫
f (x) log(f (x))dx (15)

NOTES:
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3. introduction to information theory

• The definition of entropy and differential entropy in terms of expected
values are identical.

• But the behavior of H in the discrete and continuous cases are rather
different.

– Differential entropy can be negative This is cause by the pdf
which is no longer required to be within [0,1]. For example the
uniform distribution of X ∈ [1, a], then log of f (x) will all be greater
than 0 and so the entropy will be negative. More over, the limit

lim
a→0

H(Uni([0, a])) = −∞

– H(X) is invariant under one-to-one transformation in the dis-
crete case but not in the continuous case. For example, let

Y = g(X) =


g1(X)
g2(X)
...

gn(X)

 , X = g−1(Y) = h(Y) =


h1(Y)
h2(Y)
...

hn(Y)


First Let X be discrete r.v then we have

H(Y) = −
∑

P(Y = yi) log(P(Y = yi))

= −
∑

P(g(X) = g(xi)) log(g(X) = g(xi))

= −
∑

P(X = xi) log(P(X = xi)) = H(X)

Now let X be a continuous random vector. For example let X ∼
Unif orm(0, 1) and make the transformation to be Y = aX. Then we
can check that

H(X) = log(1) = 0, H(aX) = log(a)

which is not equivalent.

Exerciese: Let X be a continuous random vector and Y −MX where M is
invertiable constant matrix then

H(Y) = H(X) + log(detM)

Exerciese: Derive and analyze the entropy of the following variables: Bino-
mial(n,p), Begative binomial(m,p), Possion(λ), Normal(µ, σ2) and Gamma(k,λ)

3.3 Mutual Information

3.3 definition. Let X be a random vector. The mutual information of r.v X is
defined as
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3.4. proof of non-negative mutual information

D(X) =
d∑
i=1

H(Xi) − H(X) (16)

Mutual information can be thought as an extension of the correlation
coefficient which measure the ability if one variable can be used to predict the
other in a linear sense. The mutual information is more general. It does not
assume the linear relationship. It is a general measure of the information that
one variable contains which is useful to predict the others.

3.4 fact. If those components of the random vectors are independent from

each other, then H(X) =
d∑
i=1

H(Xi).

Proof. Assume all Xi components are continuous random variables. Then

H(X) = −
∫

...

∫
fX(X1 = x1, ...Xd = xd) log(fX(X1 = x1, ..., Xd = xd))dx

= −
∫

...

∫ d∏
i=1

fXi
(Xi = xi) ∗

d∑
i=1

logXi
(f (Xi = xi))dx

= −
d∑
i=1

∫
fXi

(Xi = xi) log(fXi
(Xi = xi))

=
d∑
i=1

H(Xi)

So it can be seen that the mutual information is the difference between
the entropy that we would have when Xis are independent and the actual
entropy of the random vector. Also notice intuition suggests that D(X) should
be greater than 0 (i.e more messy when Xi are independent). This will be
proved.

Exercises: let X be the bivariate normal with mean µ and covariance matrix

Σ =
(
σ11 σ12
σ21 σ22

)
calculate the mutual information of X.

Exercises: Consider the linear model and what the mutual information suggests.

3.4 Proof of non-negative mutual information

3.5 definition. (Janson inequality) Suppose that g(x) is a convex function
(second derivative is positive). If X is a random variable with mean µ, then
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3. introduction to information theory

g(µ) ≤ E(g(X)) (17)

that is
g(E(X)) ≤ E(g(X))

3.6 definition. (Kullback-Leibler Divergence/ Distance, not completely cor-
rect) The Kullback-Leibler divergence between two (multivariate) density
distribution f1(x) and f2(x) is defined as

δ(f1, f2) = Ef1

{
log

(
f1(X)
f2(X)

)}
=

∫
...

∫
f1(x) log

(
f1(x)
f2(x)

)
(18)

Notice the δ is not a symmetric operator. Also if f2(x) = 0 on a set A with
P > 0 then the distance becomes δ(f1, f2) = ∞. The divergence can be thought
to be a measure of difference or distance of two distribution.

3.7 fact. δ(f1, f2) ≥ 0

Proof.

Ef1

{
log

(
f1(X)
f2(X)

)}
= Ef1

{
− log

(
f2(X)
f1(X)

)}

≥︸︷︷︸
Jensen Inequality

− log
{
Ef1

(
f2(X)
f1(X)

)}

notice log(·) is a convex function

= − log
( ∫

...

∫
f2(x)dx

)
= − log(1) = 0

Finally we observed that mutual information is simply the Kullback-
Leibler divergence between

f1(x) = f (x), f2(x) =
d∏
i=1

fi(xi) (19)

which is

δ(f1, f2) =
∫

...

∫
f (x) log

[
f (x)

d∏
i=1

fi(xi)

]
dx

=
∫

...

∫
f (x) log(f (x))dx −

∫
...

∫
f (x) log

( d∏
i=1

fi(xi)
)
dx

10



= −H(X) −
d∑
i=1

∫
fi(xi) log

(
fi(xi)

)
dxi︸                       ︷︷                       ︸

−H(Xi )

=
d∑
i=1

H(Xi) − H(X) ≥ 0

the non-negativity of mutual information is by the property of Kullback-
Leibler Divergence.

Exercises: Let X1 and X2 be multivariate normal random vectors with mean
m1 and m2 and covariance V1 and V2 respectively. Calculate the Kullback-Leibler
distane between X1 and X2.

4 multivariate normal distribution

Notation introduction first. Let

Z ∼ N(0, 1) ⇐⇒ Z1, Z2, ..., Zp are independent N(0, 1)

Notice the covariance matrix is the unit diagonal matrix. since we are assum-
ing the covariance of those components to be independent. Recall normal
distribution

f (x) =
1

σ
√

2π
e−

(x−µ)2

2σ2

then joint density of Z is

f (z) =
d∏
i=1

1
√

2π
e−

x2
2 = (2π)−

d
2 e−

1
2 ‖Z‖

2
= (2π)−

d
2 eξ

′ξ

last one use the inner products of two random vector. The level curve of the
joint density of standard multinomormal are all circles.

4.1 Generalized Multivariate Normal

4.1 definition. Let X = (X1, X2, ..., Xp)′ and the mean for each components is
µµµ = (µ1, µ2, ..., µp) and the covariance matrix is

A =


a11 a12 ... a1p
a21 a22 ... a2p
... ... ... ...
ap1 ap2 ... app


where the matrix is assumed to be of full rank. We call the vector X the
multivariate normal random vector which is

X ∼ N(µµµ,ΣΣΣ) ⇐⇒ X = AZ + µµµ
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4. multivariate normal distribution

We will assume that the Σ = AA′ > 0 (positive definite) and rank(Ap×p) = p

4.2 fact. Σ = AA′ > 0

Proof.
Σ = Cov(X) = Cov(AZ + µµµ) = Cov(AZ) = AA′

where we say Ais a square root of Σ. Fact 4.2 shows that given A we are
able to find the covariance matrix of X. The following fact shows that if we
are given Σ then how can we find A.

4.3 definition. (Positive Definite) We list several equivalent statement here

• Given Σ ∈ M(N × N,R). If ∀x , 0 which is N dimensional, we have
x′Σx > 0, then Σ is positive definite.

• Σ is positive definite if it is symmetric and all its eigenvalues are positive.

4.4 fact. (Spectral Decomposition) Let Σ be N × N matrix with full rank N.
Then we have

Σ =
N∑
i=1

λiaaaiaaa
′
i

where we have λi to be the eigenvalues in ascending order with corresponding
eigenvectors aaai . Notices that those aaai are all orthonormal.

4.5 fact. Given Σ which is of full rank with same notation in fact 4.4, we have

A =
N∑
i=1

√
λiaaaiaaa

′
i

where λ1 ≥ λ2 ≥ ... ≥ λN > 0 and A is the unique symmetric square root of
Σ.

It is easy to check that fact(4.4) matches fact(4.3)
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4.2. properties of multivariate normal distribution

The plot above shows the contour (level) plot for bi variate normal random
variables. The vector of Σ is the red arrows (which are unit vectors and
orthonormal) and the eigenvalues determines the size of the ellipses. The
multinational distribution is used as a modeling tool. We usually chose the
eignvectors and eignvalue to build this distribution.

4.6 definition. (Multivariate Normal Density) let X = AZ + µµµwhere Z s the
standard multivariate normal. Then the PDF of X is

fX(xxx) = |det(A)−1|(2π)−p/2 exp
(
− 1

2
(xxx − µµµ)′(A−1)′A−1(xxx − µµµ)

)
(20)

= det(Σ)−1/2(2π)−p/2 exp
(
− 1

2
(xxx − µµµ)′Σ−1(xxx − µµµ)︸                ︷︷                ︸
Mahalanobis Distance

)

Proof. make up later

4.7 definition. (Mahalanobis Distance) The commonly used distance in stat-
tistics is not the Euclidean distance. The Mahalanobis distance is

dM(xxx,µµµ) =
√

(xxx − µµµ)′ Σ (xxx − µµµ) (21)

The Mahalanobis distance can be thought of the version of euclidean
distance after changing the basis of the random vector by using the new basis
of eigenvector of Σ. How to see this in the expression (21)?

4.2 Properties of Multivariate Normal Distribution

Summary of the important properties:

• Linear combination of X are normal (Jointly Normal random vari-
ables)

• Normal Marginals (subsets of X are normal)

• Cov(X, Y) = 0 iff X and Y are independent

• Normal Conditional Distribution. More importantly, E(YYY |XXX) is lin-
ear in XXX

4.8 fact. The MGF of a normal random variable is

MX(t) = etµ+ (t2/2σ2)

so for standard normal we have

MZ(t) = et
2/2

13



4. multivariate normal distribution

4.9 theorem. (MGF of standard Normal random vector) Let Z ne the standard
normal random vector. Then

MZ(ttt) = exp(
1
2
ttt′ttt) (22)

Notice the way we define the MGF of a random vector is by

MX(ttt) = E
(

exp(Xttt)
)

where the product is the inner product.

4.10 theorem. (MGF of Multivariate Noraml) Still let X = AZ + µµµ. Then

MX = exp
(
ttt′µµµ +

1
2
ttt′Σttt

)
(23)

Proof. Exercises. Make up later.

4.11 fact. Let X ∼ N(µµµ,ΣΣΣ) then

X ∼ N(µµµ,ΣΣΣ) ⇐⇒ aaa′X ∼ N(aaa′µµµ, aaa′Σaaa)

for all aaa , 0.

Proof. Using the moment generation function.

” =⇒ ”: Assume the RHS. Let aaa ∈ Rp. Then

Maaa′XXX(t) = E
(

exp
{
aaa′XXXt

})
= E

(
t(aaa′X)

)
= MX(taaa′)

Then by out assumption we have multinormal distribution of X. Then by
theorem 4.10 we have

= E
(

exp
{
taaa′µµµ +

1
2
t2aaa′µµµaaa

})
this is the moment generation function the r.v aaa′X.

”⇐= ”: Make up

Fact 4.11 says that the linear combination of random variables is sitll
normal. The conclusion is heard before while this time using the covariance
matrix. The next fact extend this one which indicates the joint normality.

4.12 theorem. If ∀t ∈ (−ε, ε) for some ε > 0 s.t MX(t) = MY(t), then X and Y
have the same distribution. Or we can say this is the uniqueness of MGF.

4.13 fact. Let X ∼ N(µµµ,Σ),X ∈ Rp. Let A ∈ M(q × p,R) with full rank, q ≤ p.
Then let Y = AX we have

Y ∼ N(Aµµµ,AΣA′)
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4.2. properties of multivariate normal distribution

Proof. make up

4.14 fact. (Marginal Distribution) Let X ∈ Rp, a normal random vector. Let

X =
(

X1,q×1
X2,(p−q)×1

)
∼

( (
µµµ1
µµµ2

)
,

(
Σ11 Σ12
Σ21 Σ22

) )
then we have the fact that

X1 ∼ N(µµµ1,Σ11)

Proof. Make up

4.15 fact. Let the notation be the same as fact(4.13) which is let

X =
(

X1,q×1
X2,(p−q)×1

)
∼

( (
µµµ1
µµµ2

)
,

(
Σ11 Σ12
Σ21 Σ22

) )
Then X1 and X2 are independent if and only if

Σ12 = Cov(X1,X2) = 0

Proof. Make up

4.16 definition. (Conditional distribution) Let

X =
(

X1,q×1
X2,(p−q)×1

)
∼

( (
µµµ1
µµµ2

)
,

(
Σ11 Σ12
Σ21 Σ22

) )
as before. Define

X̂1 = µµµ1 + Σ12Σ
−1
22(X2 − µ2)

and
eee = X1 − X̂1 = (X1 − µµµ1) − Σ12Σ

−1
22(X2 − µ2)

then we define the conditional distribution of the first partition by given the
second partition.

4.17 fact. By definition of 4.16 we can derive the folloing results

• eee and X2 are independent

• eee and X̂1 are independent

• eee ∼ N(0,Σ11 − Σ12Σ
−1
22Σ21)

• X̂1 ∼ N(µµµ1,Σ12Σ
−1
22Σ21)

• X1 | (X2 = x2x2x2) ∼ N(̂xxx1,Σ11 − Σ12Σ
−1
22Σ21)

• Z = Σ−1/2(X − µµµ) ∼ N(000, III) where Σ1/2 is the unique symmetric square
root of Σ (i.e Σ1/2Σ1/2 = Σ). Divided by standard error for standardiza-

15



5. linear model and least square

tion. Also notice the sign of 1/2 indicates the sign of power of eigenvalues
in the spectral decomposition.

Notice the last result x̂xx1 is the version with a given xxx2 defined in 4.16.

Proof. make up

5 linear model and least square

5.1 Linear Regression Model

Notations: Let training data from (yi , xi), i = 1,2, ..., n where yi ∈ R and xi ∈
Rp. The linear model becomes

y = g(x,θθθ)︸ ︷︷ ︸
Signal

+ σε︸︷︷︸
Noise

(24)

where θθθ is the vector of parameters. σ > 0 to be the dispersion parameter.
ε ∼ N(0, 1) in the theory. Notice the ε is random variable collecting two part
of noise: one is the model noise (i.e the signal that we model is not exactly the
signal) and the other is the observation noise. Goals for the model is

• To describe/understand the probabilistic mechanism that generates
observations similar to those in the training data.

• To predict future values of y.

1. Model Assumptions: Basic assumptions:

• The model is
yi = g(xxxi ,θθθ) + σεi (25)

The compact matrix form is yyy = ZβZβZβ + σεεε. Here the ε is the model
error which is random and non-observable. It is not the same as
residuals.

• ε1, ε2, ..., εn are random variables satisfying

E(εi |xxx1, xxx2, ..., xnxnxn) = 0

Var(εi |xxx1, x2x2x2, ..., xxxn) = 1
(26)

for all i = 1, 2, ..., n.

• The εi are uncorrelated

Cov(εi , εj |xxx1, xxx2, ..., xnxnxn) = 0 (27)

This can be turned in to more compact matrix form
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5.1. linear regression model

E(εεε | X) = 0 Cov(εεε | X) = I (28)

and the stronger assumption below can be εεε ∼ N(0, III)

So the basic assumptions consists of the first and second moments
assumptions. The stronger assumption is that ε1, ..., εn are all iid and
follows N(0, 1), and (ε1, ε2, ..., εn), (xxx1, xxx2, ..., xxxn) are independent.

2. Data Construction: The data, information matrix, consists each row as
a case of observation which is

DDD =


y1 x11 x12 x13 ... x1p
y2 x21 x22 x23 ... x2p
... ... ... ... ... ...
yn xn1 xn2 xn3 ... xnp


Then we introduce the design matrix which is

ZZZ =


1 x11 x12 x13 ... x1p
1 x21 x22 x23 ... x2p
... ... ... ... ... ...
1 xn1 xn2 xn3 ... xnp

 =


ZZZ′1
ZZZ′2
ZZZ′3
...
ZZZ′n


= (ZZZ0,ZZZ1, ...,ZZZp)

where we use the subscript to represent the row and superscript for
column. The covariates matrix is similar but without the first column of
1. The design matrix is simply designed to match up with the regression
model with the constant term. We assume the matrix ZZZ always has full
rank and rank(ZZZ) = p + 1 < n. Link this with econometric of identifica-
tion problem in a similar way that we need at least k equation to specify
k parameter.

3. Cases for the choice of g(xxxi ,θθθ):

• Location Model: This is by chosen the θθθ ∈ R. This leads to the
location model g(xxxi , µ) = µ for all i = 1, 2, ..., n.

• Linear regression model: Let the βββ to be

βββ =
(
β0
βββ1

)
where β0 ∈ R and βββ1 ∈ Rp. Then our linear model becomes

g(xxxi , β0,βββ1) = β0 + βββ′1xxxi i = 1, 2, ..., n (29)

where the θθθ is interpreted as regression coefficient. Notice linear
model means linear in regression parameters but NOT necessarily
in explanatory variables.

17



5. linear model and least square

4. Regression Residuals: No more random and it’s observable. They are
computed given the training data which is

ei(ttt) = yi − g(xxxi , ttt) (30)

where ttt is the given parameters (not the true one). Then the sum of
square residuals becomes

S(ttt) =
n∑
i=1

(
yi − g(xxxi , ttt)

)2
=

n∑
i=1

e2
i (ttt) (31)

Notice the above equation is convex (i.e sum of convex function is
convex) so taking derivatives get the minimum. In case of the linear
regression model, we can show that

5.1 fact. The OLS estimate for βββ is

β̂ββ =
(
Z′Z

)−1
Z′yyy

The prove is by showing the first derivative of S(ttt) = 0 generate the
estimate. Lecture notes do this by checking the given estimator satisfies

S(bbb) ≥ S(̂βββ) ∀bbb ∈ Rp+1 (32)

with equality if and only if bbb = β̂ββ. The detailed proof see documents
Least Squares page 15.

5. Property of LS Estimate:

5.2 fact. (Unbiasness) Suppose that

E(εεε | X) = 0

then the β̂ββ is an unbiased estimate of βββ:

E
(
β̂ββ
)

= βββ (33)

for all βββ

Proof. The notes in lecture confusing estimate and estimator. Assume

18



5.1. linear regression model

the first moment of εεε is zero. Then

E(̂βββ) = E(E[̂βββ | X]) = E
(
E
[
(Z′Z)−1 Z′y | X

])
= E

(
(Z′Z)−1 Z′E[y | X]

)
= E

(
(Z′Z)−1 Z′E[Zβ + σεεε | X]

)
= E

(
(Z′Z)−1 Z′ ∗ (Zβ + σE[εεε | X])

)
= E

(
(Z′Z)−1 Z′Zβββ

)
= E(βββ) = βββ

5.3 fact. (Covariance of LS estimate) Suppose that E(εεε | X) = 0 and
Cov(εεε | X) = III. Then

Cov(̂βββ | X) = σ2(Z′Z)−1 (34)

Notice that the conclusion is w.r.p to β̂ββ conditioning on X. The Cov(̂βββ)
is too tricky so not going to explore.

Proof. Makeup. Page 27 & 28. The proof contains some valuable manip-
ulation of matrix operation when dealing with covariance.

Cov[̂β | X] = Cov
[
(Z′Z)−1 Z′y | X

]
= (Z′Z)−1 Z′ Cov[y | X]Z (Z′Z)−1

= (Z′Z)−1 Z′ Cov[Zβ + σε | X]Z (Z′Z)−1

= (Z′Z)−1 Z′σ2

=1︷      ︸︸      ︷
Cov[ε | X] Z (Z′Z)−1

= σ2 (Z′Z)−1 Z′Z (Z′Z)−1

= σ2 (Z′Z)−1

The font not adjusted yet

6. Gauss-Markov Theorem

5.4 theorem. Suppose the E(εεε | X) = 000 and Cov(εεε | X) = III (no distribution
is assumed). Suppose the β̃ββ = LLLyyy, where LLL ∈ Matrix((p + 1) ∗ n,R), to be
another linear unbiased estimator of βββ (i.e that is E(̃βββ | X) = βββ). Then

Cov(̃βββ) − Cov(̂βββ) (35)
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5. linear model and least square

is non-negative definite (i.e ≥ 0). Therefore, β̂ββ is the BLUE (Best Linear
Unbiased Estimate for βββ).

The theorem is saying that comparing the linear unbiased estimator is
worse than the LS estimate in terms of variability.

Proof. Page 30 and 31. Make up

7. Fitted Values

After obtaining the LS estimate of the regression coefficient, next step
is to make prediction. yyy = Zβββ + εεε and with given assumption we have
E(yyy | X) = Zβββ. We want to use the expectation as an estimator of y given
x. So

ŷyy = Ê(yyy | X) = Ẑβββ

= Z(Z′Z)−1Z′︸       ︷︷       ︸
H, Hat matrix

yyy = Hyyy (Fitted Values)

The hat matrix has very nice properties

• Symmetric very easy to check

• Idempotent This means HH = H. So H to any power is still H. Easy
to check.

• H is a projection matrix H projects yyy on space V which is the
column space of Z. In particular, HZ = Z. The detailed discussion
is at 47:13, 10-06

8. Residuals Residual comes from the difference between fitted values and
the observed real values which is

eee = yyy − ŷyy = yyy − Hyyy = (I − H)yyy

Then we have

E(eee) = E
(
(I − H)yyy

)
=

(
I − H

)
E(yyy) =

(
I − H

)
Zβββ = 000

and Cov(eee) = σ2(I − H) by a similar means. Here are some remaining
properites to be checked by yourself

• ŷyy′ ,= 0 Fitted values and residuals are orthogonal

• E(eee′eee) = (n − p − 1)σ2 there fore

σ̂2 =
eee′eee

n − p − 1

is an unbiased estimator of σ2.exercises
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Notice the total sum of square (residuals) in matrix form is

n∑
i=1

(yi − ŷi)2 =
n∑
i=1

e2
i = eee′eee = Y′Y

6 distribution of normal quadratic form

Review of joint normal and Chi-square distribution. All the detail about multi
normal is in the previous section. Some notations

• Σ−1 is called the precision matrix and the Σ−1/2 is the square root of the
precision matrix. This is important for doing sparse estimation of Σ−1 in
geographical model. This is

Σ−1 = Σ−1/2Σ−1/2 =
( p∑
i=1

λ
−1/2
i aaaiaaa

′
i

)( p∑
j=1

λ
−1/2
j aaajaaa

′
j

)

=
p∑

m=1

λ−1
m aaamaaa

′
m

notice usually eigenvalues of a matrix are NOT orthogonal while for
symmetric matrix the eigenvectors are orthogonal (i.e the covaiance
matrix here). Also check ΣΣ−1 = III. So this is a unique symmetric square
root for Σ. Square root of a matrix is never unique while if further more
we want a symmetric root this becomes unique.

6.1 fact. Let X ∼ N(µµµ,Σ) defined as before as a p dimensional random vector.
Then we obtain that

Q = (X − µµµ)′Σ−1(X − µµµ) = (X − µµµ)′Σ−1/2︸          ︷︷          ︸
Z′

Σ−1/2(X − µµµ)︸         ︷︷         ︸
Z

(36)

where Z is the standard joint normal random variables. Then

Q ∼ χ2
(p)

which means
p∑

i=1
Z2
i follows a Chi-square distribution.

6.2 fact. Follow the definition in 6.1, now consider if X is not centered, then
the case becomes

W = X′Σ−1X ∼ χ2
(p)(µµµ

′Σ−1µµµ)

where we define
γ = µµµ′Σ−1µµµ

to be the non-centrality parameter.
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6. distribution of normal quadratic form

6.3 fact. (Reproductive Property) If W1 ∼ χ2
(p1)(λ1) and W2 ∼ χ2

(p2)(λ2) are
independent then

W1 + W2 ∼ χ2
(p1+p2)(λ1 + λ2)

this can be verified by MFG.

6.1 The Fisher-Cochran Theorem

In short this theorem study the partition of sum of square of quadratic form
of normal real distribution.

6.4 lemma. Given the quadratic form Q = xxx′Axxx, it can also be written as

Q = xxx′
(

1
2

(
A + A′

))
︸         ︷︷         ︸

Symmetric matrix

xxx

that is, we can assume, wlg, that the matrix A is symmetric.

Proof. Since Q ∈ R we have that Q′ = Q. Therefore

Q = Q′ = x′A′x
Q = x′Ax

So
Q =

1
2

(Q′ + Q) =
1
2

(x′A′x + x′Ax)

= x′
(1

2
(A + A′)

)
x

6.5 lemma. Suppose that

Q = x′A′x rank(A) = q

where xxx ∈ Rp, then there are q linearly independent linear combinations

yi = bbb′ixxx =
p∑

j=1

bijxj , i = 1, 2, ..., q

and

Q =
q∑

i=1

δiy
2
i , δ2

i = 1

that is δi = ±1. Also notice if A ≥ 0 then

Q =
q∑

i=1

y2
i
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6.1. the fisher-cochran theorem

A more compact notation for lemma6.5 is , there exists a matrix B which is

Bq×p =


bbb′1
bbb′2
.
.
bbb′q


, rank(B) = q

such that
yyy = Bxxx

Q = xxx′Axxx = yyy′∆yyy
(37)

with ∆ = diag(δ1, ..., δq) and δ2
i = 1, i = 1,2, ..., q. Moreover by (37) we can

write
xxx′Axxx = xxx′B′∆Bxxx ∀xxx

therefore
A = B′∆B

Proof is omitted. See page 18 of ppt

6.6 theorem. (Fisher-Cochran Theorem) Suppose X ∼ N(µµµ, III) in Rp, and that

X′X =
k∑

i=1

X′AiX, rank (Ai) = qi , i = 1, . . . , k

Set
Qi = X′AiX

then the following two statement are equivalent:

• Q1, Q2, . . . , Qk are independent with

Qi ∼ χ2
(qi )

(µµµ′Aiµµµ) , i = 1, . . . , k

•
k∑

i=1
qi = p.

Recall the definition of non-centered chi-square distribution.

6.7 definition. Let X ∼ N(µµµ, III) ∈ Rp and Ap×p. Then

X′AX ∼ χ2
p(µµµ′Aµµµ)

which is the non centered chi squared distribution. Proof on page 22 pdf.
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6. distribution of normal quadratic form

6.2 Application of Fisher-Cochran Theorem: The Normal Location-Scale
Model

This mode is useful for independent measurement with errors. The model is

Yi = µ + σεi

where ε· are iid N(0, 1). Turn into matrix form we have

Y =


Y1
Y2
...
Yn

 ∼ N



µ

µ

...
µ

 , σ2III

 = N(µ1, σ2III) (38)

and standardize form

1
σ

Y ∼ N
(
µ

σ
1, III

)
,E(Y) =

µ

σ
1

The linear model becomes
Y = 111µ + σεεε

where the design matrix in this case is just 111. The recall the LS estimator

β̂ββ = µ̂ = (111′111)−1111′Y =
1
n

∑
Yi = Y

and the hat matrix here is

H = 111(111′111)−1111′ =
1
n

111111′

so the signal + noise decomposition is

Y = HY + (1 − H)Y = Ŷ + eee

The hypothesis usually of interested is µ =,, µ0. The decomposition of sum of
square residual is

Y′Y = Y′HY + Y′(I − H)Y

which is a general result which is a sum of two quadratic form. Here we apply
the Fisher-Cochran’s theorem with

A1 = H =
1
n

111111′ A2 = In − H = In −
1
n

111111′

In summary
Y′Y = Y′A1Y + Y′(In − A1)Y

Notice we need to check Cov(Y) , III and Cov(Y) = σ2III.

6.8 fact. if B is a projection matrix then rank(B) = trace(B)
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6.2. application of fisher-cochran theorem: the normal

location-scale model

In order to be a projection matrix, the matrix need to satisfy Symmetry
and Idenpotence (i.e Bn = B). Prove page28 slides Then

rank(A1) = tr(A1) = 1

rank(A2) = tr(A2) = tr(In)tr(A1)

Therefore by F − C theorem

Q1 =
Y′HY
σ2 Q2 =

Y′(In − H)Y
σ2

are independent and

Q1 ∼ χ2
(1)(

µ2

σ2111′H111)

Q2 ∼ χ2
(n−1)(

µ2

σ2111′(In − H)111)

Notice
µ2

σ2 1′H1 =
µ2

σ2 1′
(1
n

11′
)

1 = n
µ2

σ2︸︷︷︸
Noncenter Parameter

µ2

σ2 1′ (In − H) 1 =
µ2

σ2 (1′1 + 1′H1)

=
µ2

σ2

(
1′1 + 1′

(1
n

11′
)

1
)

= 0

The signal to noise ratio is zero for all µ all parameter to be centered. The ratio
of two chi square distribution is F distribution. So in our case, Q2 is always
central while Q1 is central under the null hypothesis. The quadratics form
here is

Q1 =
Y′A1Y
σ2 =

1
n

Y′11′Y
σ2 =

nȲ2

σ2 ∼ χ
2
1

(
n
µ2

σ2

)
Q2 =

Y′ (In − A1) Y
σ2 =

Y′ (In − A1) Y
σ2

=

(
n∑
i=1

Y2
i

)
− nȲ2

σ2 =

n∑
i=1

(
Yi − Ȳ

)2

σ2

=
(n − 1)S2

σ2 ∼ χ2
n−1(0)

Test Statistics

Under null, H0 : µ = 0 the ratio is centered F distribution. So we use

Signal = Y
2
, Noise =

S2

n
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7. comparison of nested model

and its ratio as test statistics

F =
nY

2

S2

Actually the non-center F distribution is defined with a non-centred numerator
chi-square

7 comparison of nested model

We wish to compare two models:

• A full model, called Model 1 versus

• A parsimonious model, called Model 0

• We assume that Model 0 is a restriction (particular case) of Model 1

Compassion based on the ratio

F =
Signal
Noise

where

• signal = RSS0 - RSS1 (difference of residual sum of squares)

• noise = RSS1 (minimum residual sum of squares)

where RRS0 =
n∑
i=1

(e0
i )2 similar for RSS1 using model 1. Favour model 1 over

model 0 if the F value is large and we need a reference range to decide whether
F is in fact large, facilitated by F-C theorem.

7.1 Example: Constant signal vs Pure error

Lets consider two model:

Model 0: Pure noise Yi = σεi

Model 1: Constant Signal Yi = µ + σεi

we assume εi are iid N(0, 1). Use linear model here for estimation (least square).
The model is

Y = 111µ + σεεε

and the design matrix Z = 111n×1 then we can work out the

µ̂ = Y

and the hat matrix H1 is a (n × n) with all entries 1/n. The model residual

eee1 = Y − Ŷ1 = (1 − H1)Y
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7.2. example 2: linear regression model vs local scale model

and RRS become
RRS1 = (eee1)′eee1 = Y′(III − H1)Y

using the idempotent of Y′(III − H1) For model 0, the RSS0 = Y′Y. So our test
becomes

• Signal = Y′HY=nY
2

• Noise = Y′(III − H)Y=(n-1)S2, S2 is the sample variance

• Signal + Noise = Y′Y

So we clearly see the decomposition

Y′Y
σ2 =

Y′(I − H)Y
σ2 +

Y′HY
σ2 = Q1 + Q2

Since tr((I − H)) = n − 1 and tr((H)) = 1, by the F-C Theorem we have

Q1 ∼ χ2
(n−1)

(
µ2

σ2 1′(I − H)1
)

= χ2
(n−1)(0), f orallµ

Q2 ∼ χ2
(1)

(
µ2

σ2 1′H1
)

= χ2
(1)

(
µ2

σ2 1′1
)

= χ2
(1)

(
µ2

σ2 n

)
, f orallµ

Q1 and Q2 are independent. Therefore

F =
Q2

Q1/(n − 1)
=

Y′HY
Y′(I − H)Y/(n − 1)

=
nY

2

S2
n
∼ F(1,n−1)

(
µ2

σ2 n

)
for allµ

which has a centered F distribution at null. This is why we say we need a
reference range: So range fro comparison for F is range of F when pans. model
holds. So null distribution is a central F distribution

F(1,n−1)(0) = F(1,n−1)

with rejection region

nY
2

S2
n
≥ F−1

1,n−1(1 − α)

for some small α, usually 0.05 or 0.01.

7.2 Example 2: Linear regression model vs Local scale Model

Our model one is linear model

Yi = β0 + βββ′Xi + σεi , Xi ∈ Rp

with i.i.d N(0,1) εi . We assume the design matrix is of rank p + 1 < n. Recall
the previous results, the RRS1 = Y′(I − H1)Y. It is of the same form as the
constant signal model.

Yi = β + σεi
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7. comparison of nested model

where β̂0 = Y and H0 = (1/n)111111′. Then

Signal = RSS0 − RSS1 = Y′(I − H0)Y − Y′(I − H1)Y = Y′(H1 − H0)Y

Noise = RSS1 = Y′(I − H1)Y

Then the decomposition can be

Signal + Noise = Y′(H1 − H0)Y + Y′(I − H1)Y = Y′Y + Y′H0Y

so the beauty becomes

Y′Y = Signal + Noise + Y′H0Y

then we can apply F-C theorem to construct F test. This becomes

Y′Y
σ2 =

Y′

A1︷      ︸︸      ︷
(H1 − H0) Y

σ2 +
Y′

A2︷   ︸︸   ︷
(I − H1) Y
σ2 +

Y′

A3︷︸︸︷
H0 Y
σ2

Notice the reason why divided by σ2 is that the F-C theorem requires the
covariance matrix of Y must by identity. All Ai are projection matrix. Easy to
check the two properties. Then check the rank of As’ by checking their trace
(tr. is a linear operator). Therefore, by the F-C Theorem we have that

Q1 =
Y′ (H1 − H0) Y

σ2 , Q2 =
Y′ (I − H1) Y

σ2 and Q3 =
Y′H0Y
σ2

are independent

Q1 ∼ χ2
(p)

[
β′Z′1 (H1 − H0) Z1β

]
Q2 ∼ χ2

[n−(p+1)]
[
β′Z′1 (I − H1) Z1β

]
= χ2

(n−p−1)(0)

Q3 ∼ χ2
(1) (β′Z′1H0Z1β)

so our test statistics need a non central chi-square and a ALWAYS centered
numerator chi-square. That is

Q1/p

Q2/(n − p − 1)
∼ F(p,n−p−1)(β

′Z′1 (H1 − H0) Z1β)

and under null where β1 = 0 F is central distributed.
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8 extended fisher - cochran theorem

We star with a lemma.

8.1 lemma. Suppose the rank(A) = m and let Q = (Y′AY)/σ2. Then

Q ∼ χ2
m(λ)

if and only if A2 = A.

Proof in screen shot Proof1.jpeg and Proof2.jpeg

8.2 lemma. Let

Q1 =
Y′A1Y
σ2 ∼ χ2

(m1)(λ1)

Q2 =
Y′A2Y
σ2 ∼ χ2

(m2)(λ2)

then Q1 and Q2 are independent iff A1A2 = 0.

Proof in slides pages 58 and 57

8.3 theorem. (Further Characterization of F-C Theorem) Suppose that Y ∼
N(µµµ, σ2III) and

Y′Y =
k∑

i=1

Y′AiY, rank(Ai) = qi , i = 1, ..., k

then the following statements are equivalent:

• The (Y′AiY)/σ2 are independent χ2
(qi )

(λi)

• The matrices Ai are idempotent

• AiAj = 0 for all i , j

Proof in slides

9 maximum likelihood

Similar idea as before. Notations here we will use: The population that a series
of sample comes from has a common density

f (yyy;θθθ) ≡ f (yyy,θθθ) ≡ f (yyy | θθθ)

We assume the θθθ ∈ Rp and unknown. The range of possible values of θθθ is
the parameter space denoted by Θ. Notice the yyy i can be either r.v or random
vectors (i.e f is there joint density). Important: MLE is a frequenstist approach,
that is, the parameters are unknown but not random.
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9. maximum likelihood

Likelihood Function: It is the joint density function of the data at the
observed values yyy1, yyy2, ..., yyyn, but viewed as a function of parameters. This is

Ln(θ) = fθ(yyy1, yyy2, ..., yyyn;θθθ) =
n∏
i=1

f (yyy i ;θθθ)

and the Maximum Likelihood Estimate:

θ̂θθn = arg max
θ∈Θ

Ln(θθθ)

this is usually approached by least square or sometimes non-trivial optimiza-
tion. The log-likelihood function

ln(θ) =
1
n

log [Ln(θ)] =
1
n

n∑
i=1

log (f (yi ; θ))

we divided by n for some average reason or we want to use LLN or CLT. Clearly
the estimation result are the same.

9.1 example. Let Yi(i = 1, .., n) be i.i.d Unif(0, θ), θ > 0. Suppose

max{yi} = 1.5

If we simply apply the same idea before we will get the likelihood which is
1/θn which does not utilize the sample information at all. So we should revise
the method. So we use

Ln(θ) =
n∏
i=1

f (Ti | θ) =
1
θn

I (Y1, . . . , Yn ∈ [0, θ])

=
1
θn

I (max (Y1, . . . , Yn) ≤ θ)

where I(·) is an indicator function of value 1 if sth inside the bracket happens
or 0 otherwise provided that min{yi} ≥ 0. Another way to say is this

Ln(θ) = 0if θ < max (Y1, . . . , Yn)

Ln(θ) =
1
θn

if θ ≥ max (Y1, . . . , Yn)

The results will be θ̂ = max{Y1, . . . , Yn}.

This example although is a bit tricky but still has a closed from results.
The following one is not even closed.

9.2 example. (Gamma distribution) See pdf of MLE Example 3. The final
result involves numerical methods.
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9.1. the information inequality

9.1 The Information Inequality

The Kulback-Leibler divergence between f (yyy;θθθ0), f (yyy;θθθ1) is defined as

K (f (y; θ0) , f (y; θ1)) =

∞∫
−∞

· · ·
∞∫
−∞

log
(
f (y; θ0)
f (y; θ1)

)
f (y; θ0) dy

=

∞∫
−∞

· · ·
∞∫
−∞

[log (f (y; θ0)) − log (f y; θ1)] f (y; θ0) dy

If f (y; θ1) = 0 on a set A with Pθ0
(A) > 0, then K (f (y; θ0) , f (y; θ1)) = ∞. Also

notice the K(·, ·) is not a symmetric operator.

9.3 theorem. (Information Inequality) Let

fi(y) = f (y; θi), i = 0, 1

then
K(f0, f1) ≥ 0

with = iff f0 = f1. proof on pdf page8

The connection between K-L distance and MLE is this. We restate theorem 9.3

Eθ0

{
log

(
f (Y; θ0)
f (Y; θ)

)}
≥ 0, for all θ

as follows

Eθ0
{log (f (Y; θ0)) − log(f (Y; θ))} ≥ 0, for all θ

the following inequality is important

Eθ0
{log (f (Y; θ0))} ≥ Eθ0

{log(f (Y; θ))}, for all θ , θ0

What we want is that the estimator to be consistent.

9.4 definition. A parametric model {Pθ} is identifiable if θ1 , θ2 =⇒ Pθ1
,

Pθ2

If the model is identifiable, the expected log-likelihood function

L(θθθ) = Eθθθ0
{log(f (Y;θθθ))} (39)

This is exactly the population counterpart of the log likelihood and this is the
reason that we divide the likelihood by 1/n. That is

ln(θθθ) −→a.s l(θθθ) as n −→ ∞
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9. maximum likelihood

Page 10 in pdf model 7 should be added here.

9.5 theorem. Theorem 3 on page 10

9.2 Score function and Fisher Information matrix

The score function ψ(y; θ) is defined as the gradient of the log density function
log[f (yyy; θ)], for all θ ∈ Θ. That is,

ψ(yyy;θθθ) =
∂
∂θθθ

log[f (yyy;θθθ)]

=



∂
∂θ1

log[f (y; θ)]
∂

∂θ2
log[f (y;θθθ)]

...
∂

∂θp
log[f (y;θθθ)]


=


ψ1(y;θθθ)
ψ2(y;θθθ)

...
ψp(y;θθθ)

 θθθ ∈ Θ

The expected score function is an expectation based on the true parameter θθθ0

Ψ (ttt) = Eθ0
{Ψ (yyy; ttt)} =

∞∫
−∞

Ψ (yyy; ttt)f (yyy; θ0)dyyy

where ttt is a particular possible values of θθθ. Finally under regualrity conditions
including diffrentiability of f (yyy;θθθ) w.r.t θθθ and the interchangeable of the order
of differentiation we have

Ψ (θθθ0) = 0

if the true value of parameter is θθθ0. Watch the video 11-03 and proof in pdf.

MLE Equation

Given data yyy1, ..., yyyn, the log-likelihood function is

Ln(yyy; ttt) =
1
n

n∑
i=1

log (f (yyy i ; ttt))

Then we take differentiation w.r.t ttt we get

Ψn(ttt) =
1
n

n∑
i=1

Ψ (yyy i ; ttt) = 000

and we set it to be 000. Under regularity conditions the MLE solves the equation

Ψn(θ̂θθ0) =
1
n

n∑
i=1

Ψ (yyy i ;θθθ0) = 000

Unfortunately there may be no solution or multiple solution to the equation.
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9.3. regularity conditions

9.6 definition. The Hessian Matrix is defined by differentiating the score
function 

∂
∂θΨ (yyy;θθθ) ∂

∂θΨ (yyy;θθθ) ... ∂
∂θΨ (yyy;θθθ)

∂
∂θΨ (yyy;θθθ) ∂

∂θΨ (yyy;θθθ) ... ∂
∂θΨ (yyy;θθθ)

... ... ... ...
∂2

∂2θ
Ψ (yyy;θθθ) ∂

∂θΨ (yyy;θθθ) ... ∂
∂θΨ (yyy;θθθ)


which contains the differentiation w.r.t θθθ of score function.

Notice the score function is first direvative of log pdf/pmy w.r.t θθθwhich is
the gradient while Hessian is the second derivative of log pdf/pmf w.r.t θθθ.

9.7 definition. (Fisher Information matrix) The matrix is given as the covari-
ance of score function under true parameter which is

I(θθθ) = Cov(Ψ (Y;θθθ0)) = Eθθθ0
{Ψ (Y;θθθ0)Ψ (Y;θθθ0)′}

= Eθθθ0

{( ∂
∂θθθ

log[f (Y;θθθ)]
)( ∂
∂θθθ

log[f (Y;θθθ)]
)′}

It also can be shown that under regularity conditions:

I(θθθ) = −E
{
H(θθθ0)

}
Usually the second way is easier to compute.

9.3 Regularity Conditions

The standard regularity conditions in the context of MLE theory are

• The parameter θθθ is identifiable (θθθ1 , θθθ2 =⇒ Fθθθ1
, Fθθθ2

)

• The support of f (yyy;θθθ) dose NOT depends on θθθ.

• THe parameter spaceΘ contains an open set of which the true parameter
is an interior point, that is the true parameter is not on the boundary of
Θ

• The order of differentiation and expected values can be interchanged

These conditions will guarantee most of the asymptotic behaviour in MLE.

9.4 Properties of Score function

9.8 proposition. Let θθθ0 be the true parameter. Then

Ψ (θθθ0) = 0

Notice the difference of the two notation

• Ψ (·) = Eθθθ0
(yyy; ·) w.r.t yyy
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9. maximum likelihood

• Ψ (·; ·) is the score function.

9.9 proposition. Under regularity conditions

I(θθθ0) = Eθ0

{
Ψ (Y;θθθ0)Ψ (Y;θθθ0)′

}
= −H(θθθ0)

We have seen the consistency of θ̂θθ, the MLE. It actually also has a asymp-
totic normal behaviour

9.10 theorem. (Asymptotic Normality of θ̂θθ) Let θ be the true parameter and θ̂θθ be
the MLE. Then √

n
(̂
θθθ− θθθ

)
−→d N(000, III−1(θθθ))

where III is the Fisher information matrix.

Prove of 1-dimensional case is in the note. Thus for n large enough we
have

θ̂θθ ∼ N(θθθ,
1
n

III−1(̂θθθ)) (40)

usually, n/p ≈ 15 or 20 works well.

9.5 Confidence Interval Construction MLE

Assume the MLE θ̂θθ is already obtained and the true value of parameter is θθθ.

Case 1: θθθ ∈ R1

This is an algorithm that we should use as engineering. Our ultimate goal is
to find the SE(̂θ). With the asymptotic normality we get (40) which seems, but
not necessarily and not guaranteed that

1
n

III−1(̂θθθ) −→ Var(̂θ)

However, we will still consider to use this (i.e the LHS) as an estimation of the
asymptotic variance.

• Compute
log(f (y; θ))

at a singe sample

• Compute the score function at the point

Ψ (y; θ) =
∂
∂θ

log
{
f (y; θ)

}
• Hessian matrix (a number in this case)

H(y; θ) =
∂
∂θ
Ψ (y; θ)
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• Fisher information matrix

I(θ) = −E
(
H(y; θ)

)
Then finally

1
n

III−1(̂θ) ≈ Var (̂θ)

and thus

SE(̂θ) =

√
1
n

III−1(̂θ)

• The (1-α) 100% C.I for θ

θ̂± Φ−1/2
(
1 − α

2

)
× SE(̂θ)

10 expectation maximization (em ) algorithm

The EM algorithm is used to compute MLE estimators when some information
is missing. For example, some entries in a data table are missing. Then the
maximization of the likelihood function can be difficult. The EM strategy is
to replace a single difficult problem by a sequence of easy optimization steps.
The main application if the estimation of the parameter of a mixture models.
So we will introduce the model first

10.1 Mixture Model

10.1 definition. A random vector Y has a mixture distribution if the joint
density of Y is of the form

f (yyy) = α1f1(yyy) + α2f2(yyy) + · · · + αmfm(yyy)

where

• αj are positive numbers s.t

m∑
j=1

αj = 1

• fj(yyy) are density functions of KNOWN shape (i.e normal with mean µj
and σ2

j )

So the f (yyy) specify a density function that a series of sample comes from.

The generation of the mixture model can be thought as a two steps experi-
ments.

• Step one: One of the mixture component is randomly selected. Notice
each time only one component can be choosen, that is, we use a r.vector
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10. expectation maximization (em) algorithm

X to model this step

X = (X1, X = 2, · · · , Xm) ∼ Multinomial(n = 1, α1, · · · , αm) (41)

where αj are exactly the probability been selected. So the joint density
here, with n = 1 is simply

h(X) =
m∏
j=1

α
Xj

j

If we look at the marginal density of X at xxxj is

h(xxxj ) = αj

where xxxj is the vector that are all zero except the position j.

• Step 2: The vector Y is randomly obtained from the sub-population
selected in the first step. Then

f (yyy | xxx) =
m∏
j=1

[
fj(yyy)

]xj
That is

f
(
yyy | xxxj

)
= fj(yyy)

Then we can put them together. The joint density of X and Y is

f (xxx, yyy) = h(xxx)f (yyy | xxx) =
( m∏
j=1

α
Xj

j

) m∏
j=1

[
fj(yyy)

]xj
The result of the first step is not available in practice. So that is we only know
yyy and the marginal density of Y

f (yyy) =
m∑
j=1

f (xxx, yyy) =
m∑
j=1

αj fj(yyy)

we don’t know joint density but marginal density.

The density fj usually includes unknown parameters. For example

fj(yyy) = N
(
yyy;µµµj ,Σj

)
, j = 1, 2, .., m

which is the Gaussian mixture model. Those αj are unknown weights with
sum 1 constrain. So the mixture model have plenty parameters. So the missing
part of the model can be

• Unknown number of mixture components

• Unknown number of mixture components

36



10.1. mixture model

• Missing entries in the data table

Application of EM algorithm

• Estimation of parameters of mixture mode, with application to cluster
analysis

• Estimation of multivariate location and scatter matrix in the presence of
missing data

• Estimation of model parameters in the presence of latent variables

Notations:

• Y as the incomplete data (only data we can use)

• X as the Augmented data (Artificial part may want to eliminate)

• (yyy,X) as the Complete data

• θθθ as unknown parameters

The algorithm has two main steps: The Expectation step and the Maximiza-
tion step

E-Step

The incomplete data log-likelihood is

I(θθθ;yyy) = log[f (yyy;θθθ)]

The complete data log-likelihood is

I(θθθ;yyy, xxx) = log[f (yyy, xxx;θθθ)]

Then the expected log-likelihood is

Ĩ
(
θθθ | yyy;θθθ(k)

)
= EX|y;θθθ(k){I(θθθ;yyy,X)}

=
∫
· · ·

∫
log[f (yyy, xxx;θθθ)]h

(
xxx | yyy;θθθ(k)

)
dxxx

(42)

So the expectation log-likelihood, by conditioning on yyy, eliminate the un-
known xxx where θθθ(k) is the current value of θ in the iteration and the θθθ is the
parameter we want to estimate. The density h(xxx | yyy) has no problem. We take
expectation w.r.t xxx and with given yyy. The specified version of it is

h
(
x | y; θ(k)

)
=

f
(
y, x; θ(k)

)
f
(
y; θ(k)

)

37



10. expectation maximization (em) algorithm

M-Step

θ(k+1) = arg max
θ

Ĩ
(
θ | y; θ(k)

)
and it is guranteed

I
(
θ(k+1); y

)
≥ I

(
θ(k); y

)
which is the ascending property of EM-algorithm.

Overview of the Steps in the EM algorithm

• Write the density for each SINGLE observation

• Write the likelihood for the (entire) incomplete data

• Construct the complete-data log-likelihood function

• Take expectation of the complete-data log-likelihood function using the
conditional distribution of the augmented data given the incomplete
data, and the current values of the parameters. This is called the E-step.

• Maximize the resulting expected log-likelihood function. This is called
the M-step.

• Repeat steps 4 and 5 until convergence.

Notice the ”complete data construction” is not int a real way while it is in a
theoretical way.

10.2 example. Let the mixture density to be simply

f (y, p) = (1 − p) ∗ f0(y) + p ∗ f1(y)

and the only unknown parameter is the p (i.e both f0 and f1 are fully specified
with no unknown parameters). The sample data observable are

y1, y2, ..., yn

then the incomplete data likelihood is

I(p;yyy) =
n∑
i=1

log
[
(1 − p) ∗ f0(y) + p ∗ f1(y)

]
The complete data in this case should be

(y1, x1), (y2, x2), ..., (yn, xn)

where each Xi is from a binomial(1,p) (or Bernoulli(p) which is

Xi =
{

0 with prob 1 − p
1 with prob p
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10.1. mixture model

Therefore
h(Xi ; p) = (1 − p)1−XipXi

then for each pair (yi , xi) iid, the bivariate density is

f (x, y) = h(x; p)f (y | x)

We assume that
f (y | 0) = f0(y), f (y | 1) = f1(y)

Therefore

f (x, y) = h(x; p)fx(y) =
{

(1 − p)f0(y) if x = 0
pf1(y) if x = 1

Since Xi can only take values 0 and 1 ,

E (Xi | Yi = yi) = P (Xi = 1 | Yi = yi)

= f (1 | yi) =
f (1, yi)
f (yi)

=
h(1; p)f (yi | 1)

h(1; p)f (yi | 1) + h(0; p)f (yi | 0)

=
pf1 (yi)

pf1 (yi) + (1 − p)f0 (yi)

= p̃i

This is considered to be an estimate of the probabitlity that yi comes from
population of density f1(t). Then we compute the complete data log-liklihood

I(p;yyy,X) =
n∑
i=1

Xi log [pf1 (yi)] +
n∑
i=1

(1 − Xi) log [(1 − p)f0 (yi)]

a useful trick is
f (x, y; p) = [pf1(y)]x [(1 − p)f0(y)]1−x

then

Ĩ(p;yyy) = E
{
I(p; y, X) | y; p(k)

}
= E

 n∑
i=1

Xi log [pf1 (yi)] +
n∑
i=1

(1 − Xi) log [(1 − p)f0 (yi)]
∣∣∣∣∣y; p(k)


=

n∑
i=1

E
{
Xi | yi ; p(k)

}
log [pf1 (yi)] +

n∑
i=1

E
{
(1 − Xi) | yi ; p(k)

}
log [(1 − p)f0 (yi)]
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10. expectation maximization (em) algorithm

where the conditional expectation part is done already, so

=
n∑
i=1

[p̃i log(p) + (1 − p̃i) log(1 − p)] + C

Then the M-Step is to find the maximizer p(k+1) of Ĩ(p;yyy) srt p. So set the
derivative to 0

d
dp

Ĩ(p; y) =
n∑
i=1

(
p̃i
p
−

1 − p̃i
1 − p

)
= 0

and solve for p. Result is

p(k+1) =

n∑
i−1

p̃i

n

Initialization of p(0)

Use K-means (for instance) to get an initial partition of the data into two sets
like class 0 and class with size n0 and n1 respectively. We set

p(0) =
n1

n

Iteration Step

Once initialization is done, we do

p̃i =
p(k)f1 (yi)

p(k)f1 (yi) +
(
1 − p(k)

)
f0 (yi)

′

and set

p(k+1) =

n∑
i−1

p̃i

n

Stopping Rule
Given some small δ > 0, stop when∣∣∣p(k+1) − p(k)

∣∣∣ < δ
and return

p̂ = p(k+1)

Possible extension

• There are m > 2 sub-populations

• The densities fj(y) have unknown parameters

• The observations are multivariate, y ∈ Rp

• The observed data table has missing data
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10.1. mixture model

All these situation can be expressed by the EM algorithm.

Case for more than 2 sub-population

See notes of several componets. Make up later.
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