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1 Fundamental Measure Theory

Definition 1.1 (o-Algebra & measurable space) Given sample space (outcome space) Q, let

F be the set of subsets of Q. Then F is called the o-Algebra if the following holds:

o Empty setisin 0 € F

o Closed under complement. If A € ¥ then A° €
o Closed under union. If A; € F,i = 1,2,...,n, then U/ A; € F

Then the tuple (Q, F) is called the measurable space.

— QKN o REAZ R powerset, BPEFTH FEGEAL, =2 {0,Q},
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Example 1.1 Let Q ={a,b,c,d}, A = {{a}, {b}}. Then the smallest o field generated by set A

becomes

o(A) = {0, {a}, {b}.{a, b}, {b,c,d}. {a,c,d}, {c,d}}

EEACo(A), MARE AcET(A).
Definition 1.2 (Borel o-field) The Borel o-algebra of R, written B, is the o -algebra generated
by the open sets. That is, if O denotes the collection of all open subsets of R, then B = o(O).
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Definition 1.3 (Measure) Given measure space (Q, ). Then a set function (i.e domain is set

of set) V defined on F is called a measure

o MEIEFRHEO> V() >
o WHEME AR V()
o METHT M If A € F,i = 1,2,...n, and A;, Aj are disjoint (i.e A; N A; = 0 for

i # j) then
Ja
i=1
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Example 1.2 (Counting measure) Given measurable space (Q, F). Let V(A) be the number of

Vv

=Y V(A) (D
i=1

elements of A € F. Then V defined on F is called the counting measure.

Example 1.3 (Lebesgue Measure) There is a unique measure m on (R, B) that satisfies
m([a,b]) = b—a

for every finite interval [a, b], This is called Lebesgue Measure. If we restrict m to the measurable

space ([0, 1], Bjo,1]) then m is a probability measure.

2 Basic for Inference

Let X = (X1, Xo, ..., X;;) be iid sample from a model 7.

Definition 2.1 (Statistic) A statistic is a measurable function of data which does not depend on

any unknown parameters.

B4t 2 1Ak 6L8-K % paramter 8915 &, o2, 7 £5F,
Definition 2.2 (Sufficient Statistics) Let T(x) be a statistic. If the conditional distribution of X

given T does not depend on unknown parameter values, we say T is a sufficient statistics.

B #9524 T inference FIALE & X oA TR #9189 3 A parameter ., Sample X ¥ &,4-89
SETAS MMy —F5RE 0 F KN, —HyALXY, R AR IFZTEALS
#9, W sample PETH A % 6 092 B4 E T(x) 27T, A T(x) RAZFTH sample k2 6
AR AR KA, E£XA T 4 condition Z AT, X 5 dependson 6 &9,  T(X) A4 —
A filter, TIEAT T A X 0 849158, N F A9 X (ie conditional X) 85 0 L X T,

Lemma 2.1 (Factorization) Iff the density function of X can be written as

f(x:6) = h(x)g(T(x); 6) 2)



then T(x) is sufficient statistics for 6.

Definition 2.3 (Minimum sufficient) Sufficient statistics T(x) is minimum sufficient if T is the

function of every other sufficient statistic.

Sufficient Z A & X T A AL WE L, A TaZETA TR,
Minimum sufficient 47 2& 7T & 6,4 7C 412 8., KT @ 7] A completeness,

Definition 2.4 (Completeness) Statistics T(x) is said to be complete if E(g(T)) = 0 implies
g(-) = 0 almost surely for any function g Check

o R AHLE—N g()VEFEQT) =0, AFLRKHAPLET T TPMROESHELT 08912
BICE > N
Example 2.1 (Sufficient Stat) Let X ~ Exp(A) and we have n i.i.d samples. Then

Fe:) = 2"exp{-2)_ xi} [ [ To.o) (i)

i=1 i=1
where the statistics T(x) = >, x; is sufficient.

Definition 2.5 (UMVUE) An unbiased estimator 0 is uniformly minimum variance estimator

of 0, if for any other unbiased estimator 9, s.t
Varg(6) < Vary(6)
forall 6 € ©.

The subscript 6 is used to represent the variance calculation is based on true parameter 6.

3 Exponential Family

Definition 3.1 Suppose there exists a real valued function n(0), T(x), A(0) and h(x) s.t.

f(x;0) = exp{n(0)T(x) — A(0)} h(x) 3)
we say {f(x;0) : 0 € ® C R} is a one-parameter exponential family.

Bp— A rv &9 pdf(pmf) TA B gk, (1) PIHB X, WiZ rv kR IERK S HEG—A, 7T
VAT A — FiEH, 4o RABXPTA &9 sample #F 2 i.i.d #9, WA joint density 473 2K & T 45
HHAk, 089K span T/ set,

Example 3.1 Suppose X1, X», .. ., X, are i.i.d from Binomial (m, 0) There joiny deusity function
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f(x1,x2,...,x,;0)

(m)wa—mW”

i=1 \ i
= H " g2 %i(1 — g)=m—%i
[i=1 \ Y /]
Cn m 1 9 Sxi
— - 1 _ 6 —mn
| i=1 Xi ] (1 - 0) ( )

N

m || 0 _
= exp Zx,-lnl_g—mnln1 0

Li=1 \ i /] —_— A)
h(“ ) T(x) n(0)
X

Note JbstAB% m & Cset, R 0 & parameter, 3T Binomial Distribution H AN i
fEAL3e n(0) XA~ log-odd 54k
_ _exp(n)
1 + exp(n)
M 3 K T KR A

g(x1, ..., x5 0) = exp{nT(x) — nmIn(1 + exp(n)) } h(x)

A8 75 ik ¥ %=, Poisson, Negative Binomial #}J& T 35 257 7%
Definition 3.2 (Support of r.v) Let X be a random variable or vector. The support of X of that
of its distribution is the set of all x s.t V6 > 0,

P{Xe(x-6,x+6)}>0

HALEZ S support #9 B 8924 THM X = x RTRA A8, T BHAFILRESH
Big, matTHEENMAEE (ede Z ~ NO, 1) M THEENG 2z, P(Z=2)=0) &1
W& & k4o EATE, B x expand 2] — MRNAG R ] L3485, #l4e, standard exponential
distribution has support [0, c0), standard normal has support R, B 3t 7 ¥A kK Z 4§ support 22
fit A

{x: f(x;0) >0}
If two distributions belong the same one-parameter exponential family, then they have the same
support. F] —35# % (ie RIAM T,n, A S L HK, TR 0) PogaA, K support Rk
BT 540, HIt X ~ Uniform(0, 0) s8R & T 388 5 %, B A K support 4R T 54 6.
Definition 3.3 Suppose there exists a real vector function 1n(0), T(x), A(8) and h(x) s.t.

k
f(x:0) =expi > n;(0)T;(x) - A@) { h(x) 4)

j=1

where



o 1.(0) and A(0) are all maps from ® — R
o T.(x) and h(x) are all maps from R’ — R

we say {f(x;0) : 8 € ® c R*} is a multi-parameter exponential family. Defenition from here

page 18

¥z A IBRE S HRRNEN, X T VAW, #4e normal distribution 5% 3§ 3 5 H

HT. EERAN K BFHEAR S A 069 conponet —# % 89T Ao, BF —FFE L E

k
f(x:0) = a(x)b(®) exp > 1;(O)T;(x)

Jj=1

)

Example 3.2 (Normal distribution) Let X ~ N(u, 0%). Let X\, ..., X, are i.i.d samples. Then

there joint density becomes

¢ (xl’ e X 0'2) = 21) "0 exp —M
2072

n n 2
= (2n) "% exp el E xl-—L E x-z—ﬂ—nlog(f .
o? P 202 — 202

It is clear that this fit definition 3.3.

TS Ak, i THRRTAKFES b0)

Lemma 3.1 If we have

d 0
E/f(xﬂ)dx:/(gfojf(xﬁ)dx

where 0 is the jth component of 6. Then Vj,1 < j < k we have

‘ d d
E Te(x)771(0) | = —-log b(@
e(; ) g )) 56, 10£00)

ATHE M FF A trival, FH 5t RAew b @A R R0 2|,

Proof. LHS Z % F x 89424, *F VO € © c R¥ %A
/f(x;B)dx =1

Frvd AL @ a4k, Bivdk LHS /R 0, *F-F RHS,

k k
o (x:0) = ax)exp {Z Te(X)m(H)} . {b’(@) 0 TAx)%nf(e)}
j (=1 /

=1
sEFTRSFASLEEHAO

k k k
[ @3- Tiome@dx = [ atono) > 1o Y1005 n(0)d
=1 =1 =1 J
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https://ocw.mit.edu/courses/mathematics/18-655-mathematical-statistics-spring-2016/lecture-notes/MIT18_655S16_LecNote7.pdf
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4 Choice of Estimator

EH %A estimator B & AE FH N #ATIVE, FHHZ MSE BAL%EES
T bias #» variance, & ENLBIL/NSREF X,
Theorem 4.1 (Holder’s Inequality) Let E(| X|P) < oo, E(|Y|?) < oo for p, q where 1/p+1/q =1,
then
E(x)| < B(XY)) < {(E(XP)} 7 {E(¥|)) ™

Proof. We show the first inequality by
—-|XY| < XY < |XY| = -E(|XY]) < BE(XY) <E(XY|) = |EB(XY)| < E(|XY]))

For the second inequality, we appeal to Yong’s inequality which is,if we have 1/p + 1/g = 1
then Va, b > 0 we have

P b
ab< =+ (8)
P q
apply this with
_ X _ ¥
a=———7 b=———
{E(IX|P)}r {E(|Y]9)}
then

XY | S R
E(x|7)7 E(y|s  EUxP) p o E(Y) ¢
take expectation on both hand sides (notice | X||Y| = |XY|)
E(|XY])
E(X|P)7 E(|Y|4)a

=1

11
<=+ =
P q

Theorem 4.2 (Cauchy-Schwarz inequality) The probability version of C-S is

E(XY])* < B(X[)E(Y|?) 9)

The poof is simply using Holder’s inequality and let p = ¢ = 2. This equality then easily

derive the covariance inequality
ICov(X,Y)]? <E ((X - ]E(X))z) E ((Y - E(Y))z) — Var (X) Var (Y) (10)

6



Remark (Mean Square Error Decomposition) The MSE can be decomposed into

MSE(@8,, 0) = E (@ - 9)2) = Var (§n) + Bias? (é‘n) 1)

35 W8 (0, — 0)2 & —/ loss function, L3 VA2 %49 loss function tde |6, — 0] %

& 0-1loss. Theoretically the best estimator can be defined as: 6, is the best estimator if
MSE(6,,0) < MSE(6,,0) V6,
But this is hopeless, since if we set the estimator as a constant equal to the true parameter 6 then

the MSE = 0.

Definition 4.1 (Convex Function) The function ¢(x) is said to be convex if Va € [0, 1], and let

a, b be two distinct points in the domain, then

¢(aa+ (1 —a)b) < ap(a)+ (1 —a)p(b)

If the < is strictly less than, then it is said to be strictly convex.

Theorem 4.3 Let ¢(x) to be convex, then Nt in the domain, 3(x), which is a line {(x) =
a(x —1t) + ¢(t) s.t
¢(x) > €(1)

even if t is not differentiable.

AP 3+F convex 89 ki LG L, FAEE—EWMEALT o(x) X F, BpEt SV
<. Recall Jensen’s Inequality

Theorem 4.4 (Jensen’s Inequality) Let ¢(-) be convex. Let X be a random variable. Then

P(E(X)) < E(¢(X))

Proof. #) ] Theorem 4.3, H 4 ¢ convex, M & /& H 4 €(x;1) = a(x —t) + ¢(t) < ¢(x)Vx,
At =E(X) WA
P(X) 2 a(X — E(X)) + ¢(E(X))

Then take expectation on both sides we get the results.

Definition 4.2 (Risk) st 4314889 loss 48 estimator 4% B2 parameter B89 loss, & 3L
A
R(0,6,) = Eq (L(60,0,)

13X loss function L(6, 5}1) is strictly convex in the second argument 0.

TEag e BB, VA risk 1A F| ZARAE, A RAEF G estimator B FAE—/NILE £
% (risk .8 ) #9 estimator



Theorem 4.5 Let T(x) be a sufficient statistics and 6, is a given estimator. Then the new

estimator
0(t) =Eg(0, | T =1) =E(6, | T =1)

(assume the loss function here is strictly convex) satisfies R(6, 6,) < R(6, gn) unless 0, = 0, the

= can be achieved.

Proof. Consider loss function L(#, -) strictly convex. Then using Jensen’s inequality we have
L(e,ﬁn) - L(H,E(én IT = r)) < E(L (e,én) IT = t)
then take expectation w.r.t T on both sides we get
R(6,0,) < R(6,0,)
Notice the RHS is by using the iterated law of expectation.
Theorem 4.6 (%X T & A %iT=09E— Ll fEi+ G4 &%) Suppose T is a sufficient

and complete statistics, then if 3 a unbiased estimator for 0, then 3 a unique unbiased estimator
for 6 that is a function of T and it is UMVUE (check).

Proof. Let 6 is unbiased (not a function of T, it is simply unbiased). Then we come up with,

naturally
6, =E@0 | T) = f(T)

is unbiased (iterated expectation). Assume there exists another unbiased estimator which is also

a function of T which is 65 = g(T), then
E(6, - 63) = E(f(T) - g(T)) = 0

then appeal to the completeness of T, f(T) — g(T) = 0, so f(T) = g(T). this is not a good proof,

see the hand script

EEE LA E estimator 2 % T T #9FH3k, T @— AN F 2 4efT-F & Poisson 57
# e~ UMVUE,

Example 4.1 Let Xy, ..., X, are i.i.d Poisson(A) distribution and we want an unbiased estimator

for e=*) while e=%» is biased for e=*. Then we observe that
e =Pri(X =0)
so we can try to find an unbiased estimator for the probability of X = 0 so it should be
h(xy, X2, .0y Xp) = 1(X =0) = LoXx=0

0, o/w

it is easy to check the expectation of h(x) exactly the e~ so unbiased.Unfinished



3 F — A estimator & AT XA K 2] — A4 49 lower bound sk & Kby A A2 B FP
Carmer Rao lower bound
Theorem 4.7 (Carmer-Rao Lower bound) Let some regular conditions be hold:

o {x: f(x;0) > 0} the set does not depend on 6

o The parameter set © is an open
o The pdf f(x;0) is differentiable and finite

o The differential operator is exchangeable that is

d 0
E/f(X;e)dx:/F@f(X;o)dx

o The differential operator is exchangeable even for function which is

d 0
78, h(x)f(x;0)dx = / h(x)afojf(x;o)dx

o For any h(x), an estimator of parameter 0 3its second moment is finite which is
Eg(h(x)*) < o0

then we have

Var (h > ! dE h 2 12
ar (x»_%[% o <x)>] (12)

Proof. Starting with the last condition

d B d &0
Ly (h() = / () ;O3 = / ) Fxi )

_ B, (h(x) 2 log f(x: 9))

Easy to check that Ey (% log f(x; 9)) =0, So

= Covy (h(x), % log f(x; 9))

then in short we have

2

d 0 2
[—Eg(h(x)) = Covyg (h(x), EY log f(x; 9))

do

< var(h(x)) - var (% log f(x; 9))

P 2
= var(h(x)) - Eqg ((% log f(x; 9)) )

= var(h(x)) - 7(0)

9



o T VAIERR h(x) 2 RARHEHE, MALE A

Var (h(x)) > %9)

& Lk 89 lemma AF T sample & % AN BARLE R, HEFTAEHLA T S n A sample T
i.i.d 4984 lower bond ¥ #95-F R ZA LK, HABEKEHFARE—ANEHTRL
ERA 5 5

SEothe = [ 10 2w 0)ax

K AT RA ST, FrvA lemma 243 A
Theorem 4.8 (Carmer-Rao Lower bond Multiple i.i.d Samples) Let X = (X1, Xa, ..., X,) be

vector of i.i.d samples and the estimator is based on X. Then we have

2

(13)

1 d
Var (h(x)) > "I (0) [%Ee(h(x))

Proof. Only shows the denominator is nZ (). Since X; are i.i.d so
n
fa:0) =] fxiz0)
i=1

then we have the expectation of square of score function to be

2 n 2
Eqg ((% logf(x;@)) ) =Ey ((Z % log f (xi; 9)) )
i=1
n 9 2
=) E (—1ogf<xl-;9>) ]
i=1

06
the last equation is from directly expand the square of sum which is

n 2 n 2
0 0 0 0
(Z =5 1ogf<xl-;e>) = (% log f(x; 9)) ) (% log f(xl-;m) (%Mg f(x,-;e))

i=1 i=1 i#j
For the crossing term, since they are independent, the covariance = 0. Also we have shown their

expectation are O for each x, so the expectation of product is O.

Recall that for MLE we have an asymptotic behavior which is
V(B — 6) —a4 N(©0.I7'(6))

however we should know that variance does not have such a behavior, Var (\/ﬁé\n) —sq. I71()
Check this.

CR lower bound %88 4= & estimator #9 variance #EBf & 5 T iX /> lower bound #f X4 iX A~
estimator & £ 7 5 «]» variance #9 estimator, 4R 3t —F, X/ estimator Z TR AHY, AR 4
W T MSE = Bias + Variance, FfvA€ -2 UMVUE,

10



Example 4.2 Let x1, x; . . . x, ~ Poisson(A) i.i,d, f(x; ) = A*e~*/x! First compute I(9), easy
to get (A1) =1/A. let A, = X, It’s variance is

A 1 A
Var (/ln) =—-n Var (x;) = —
n n

The CR lower bound is |
A

nl(A) ~

So its variance reach the lower bound. ;fn is UMVUE

Var (in) =



S Hypothesis Testing

Y31 R BT T VARRIE A Z AN, AR AR AR T R

o Estimates: 2% £ point estimate, Ri# it sample #& i+ 5469 — /A

o Inference: 7 7 point estimate, RA1HF 24X/ v — AR REZHAZE, AT
VA assign € — M FE oA e CLT F it &%

o Hypothesis test: inference % 49 #LF A E AR R AHY, PTG AMEEAR T k=

- yes or no iX /7] AL
Hypothesis test &,4 ##f 4, —-& Hypothesis
Hy: 6 €0
H,:0€0,

1 & decision rule
yes (reject) or 1, if...

¢(X) =

no (not reject) or 0, otherwise

X ¥ 49 X 52 sample, BP ] vAA& & decision rule & random %9 ( B 4 sample £ RALAT ), B
RO G AP aEiR, FH (type D) FoBfh (type II) 4%4%. Let’s take the 01 definition of

the decision rule.

Definition 5.1 (Power function) Let ¢(X) be a statistics, and 0y and 6, are the null and

alternative hypothesis parameter. Then

B(9,0) = Eg(é(x))
is called the power function.
727 power function TAABRR T 0 a9 RH, HHN 0y o R TR — RAERIGM
N 0 BR8N £ power,

Definition 5.2 (Size of a Test) Let 3 be power function. The size is the probability of committing

type I error, so it is

a = sup B($(X),0)

0@

If simple test, then size equals significance level?

5.1 Uniformly Most Powerful Test (UMP)

Definition 5.3 (UMP) A test ¢.. of size « is uniformly most powerful (UMP) test if and only if
B(¢",0) = B(¢,0)

12



forall 6 € O, and ¢ of level a.
PPEEEZR 0 € Oy ¢ AMEAF power K K, KRBT AEEH
B(¢",0) = Sl;pﬁ(sb, 6), Y0 €0,

W T #AF error 1 AEA% ) Y minimize, BTvA&RAE 4L P — A error i E — A~ 89 L
PR, 2K )Gid it v sk minimize B —#F error, 4o &A1z H H — L 4R

sup B(¢(X),0) < a
(SO

where « is a given level. 42 & null X &4 — /> population #f X4 size #£4% T a. F @4 N-P
HEIRE S SE

Theorem 5.1 (Neyman-Pearson Lemma) Suppose that Py = {Po} and Py = {P1}. Let f; be the
p.d.f. of P; w.r.t. a o-finite measure v (e.g., v =Py + P1),j =0, 1.

1. (Existence of a UMP test). For every a, there exists a UMP test of size a, which is equal to

L fi(X) > cfo(X)
T.(X)=94 v AX) =chX)
0 Ai(X) < cfo(X)

where y € [0, 1] and ¢ > 0 are some constants chosen so that E [T.(X)] = @ when P = P
( ¢ = oo is allowed).

2. (Uniqueness). If T.. is a UMP test of size «, then

I fi(X) > cfo(X)
0 filX) <cfo(X)

Note o 3L 892 X4 B Jun Shao 6.1.1, 3 P % —A-d E A5 H index ¥ population,

XCPeP=PyUP| Ztest I p BT Poi&A P. XFF test £ simple test,

ZREGRALET R T AKX c Foy, WRMATAHE, XA test 2

UMP, R 7rka#H E[T.(X)] = a k# c,

E P E E[T.(X)] = a A EEF H — K42 & maximize power,

oasPHEZREPHX)=10r0) =13, EZEXEZW as FARLHEELFT as
convergence, X Z ) n, sample size 7 fixed #9,

o ER, EAtest 9T XAAKZEFREH), HIBLHNMARZA fi/fo >c RTEAME. &
BT ratio 0938 MR test 097 v — 3, B LB Assignmentl, Q6.

T.(X) = {

©

©

Example 5.1 Consider simple test

Hy:6=1 H,:6=2



The NP test, which is UMP, will be the same as
Hy:0<1 H,:0>1

We should also make sure that

sup B(¢(X), 0) =

0@
that is B(¢, 0) is non-decreasing in 0
Definition 5.4 (Monotonicity Likelihood Ratio for One-sided Test) Let f(x, 0), 6 € ® C R with
hypothesis to be
Hy:0<6y H,: 6> 6

this is a one sided hypothesis test. If, V0| < 6>, we have

f(x,62)
f(x’ 01)

as a monotone non-decreasing function in T.

= b(T(x))

Intuition: 3 B 4924 T 4|2 rejection 89N, B & 2 WAFEH LA 1EEIEL R
#% . Likelihood ratio & alternative }t null, 2 FbAf A% K A4 4451845 69 population, %
K B — & A2 KAV FFE 28 R ABIL B reject,

Example 5.2 Let 6, > 6. For exponential family
f(x,02) _ b(02)
f(x,61)  b(6h)

so the family has monotonicity likelihood ratio property as long as the function c(-) is nonde-

exp{T'(x) (¢(62) — c(61))}

creasing in 6.

Then we extend the NP test to those with MLR property.

Proposition 5.2 Let f(x, 8) has monotone likelihood ratio then Y h(-) which is monotone non-

decreasing, then
8(0) = Eq [W(T(X))]

is monotone and non-decreasing in 6.

Using the above property we can extend the NP test to be

Theorem 5.3 If the function f(x, 0) has the monotone likelihood ratio property, then it can be

written as
1 T>k
¢(T(x) =1y T=k
0 T<k

and B(¢, 0) is monotone in 6.



BP 4o R 2t ratio iX A~ function & ATAEKF] — A~ K T Huag statistics 8928 H4, AF A test
T AT A B 4K T iX A statistics 49 test, %% T One-Sided test, B 7] A ] NP Lemma
B EA: B 6, > 6

o Simple test
Hy:0=60p, H,:0=96,

o Same side as the direction of 6, and 6
Hy:0=6¢y, H,:0>06)

o Extend the null
Hy:0<6y, H,:0>0)

VAL ZF B35 s & 473 89 UMP test £ — &89, T @it two sided 89 0L, &£ B %
two-sided hypothesis test 8975 X, Let §; < 65,

Hy:0¢ (91,92) v.s H,:0¢ (91,92) (14)
Hy:0¢€[0,0,]v.s H,: 0 ¢[601,05] (15)
Hy:0=069v.s H, : 0+ 6y (16)

T % 2 3148 exponential family 49 test 1L,

5.2 UMP and UMPU for Exponential Family

BT A #9 UMP #% & UMPU, {2 if4% UMP R A /£, B &A1 YA unbiased 49 test ¥ 4%,
F) UMP #9 test, #&% UMPU test, iX A% 4 5 & A1154&K UMVUE B2 —#49: % general
B AFHY test AR, &AT impose — & AF, EIXANZAF T RATFHIIFA test,

Definition 5.5 (Unbiasedness of a Test) The test ¢ satisfying the following test

B(p,0) < a VO € O
B(#,0) > a VO € O,

is said to be unbiased. So any UMP is UMPU.

Definition 5.6 (Similar Test) Consider hypothesis test
Hy:0€0®y H,:0 €0,
Let @01 = 0p N Oy. A test ¢ is similar on 601 if and only if
B(¢,6) = a, V6 € Boy
(The intersection is not accurate. It can be boundary points of the two sets)
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Definition 5.7 (Natural Exponential Family, Shao §2.1.3) In lecture it is given as

f(x:6,¢) = a(x)b(6, ¢) exp {0T (x) + ¢"U(x)}

where 6 € R, ¢ € RP. We focus on a subset of the natural exponential family

f(x;0) = a(x)b(0) exp{O6T(x)}

which is one-parameter.

Theorem 5.4 (UMPU Test for One-parameter NATURAL Exponential Family) Let f(x, ) be
the pdf of single parameter exponential family, that is ¢ = 0 in definition 5.7.

1. Let the hypothesis to be
H() 10 € [91,92] Ha 10 ¢ [6’1,6’2]
then UMPU test of size « is
1 T<KyorT >Kp
¢(T(x) =y T=K,i=12
0 Ki<T< K,
where
@ = By, [¢(T)] = Eo,[¢(T)]
2. Let the hypothesis to be
Hy:0¢[01,02] Hy:0¢€[04,0:]

the interval can be open. Then the UMPU test of level « is

1 Ki<T< K,
dT(x)=4y; T=K;,i=12
0 KiorT > K>

where
a =By, [¢(T)] = Eo,[¢(T)]
3. Let the hypothesis to be
Hy:0=600 H,:0+ 6y

the interval can be open. Then the UMPU test of level a is

1 T<KjorT > K,
¢(T(x)) =YY T = Kl'
0 Ki<T< K,
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where
a = Egy[¢(T)]

and
Eg(T¢(T)) = aEqg,(T)

Note xf TR & (15) = (16) HuAi] test T X — 4, EBREZ TR 0 = 6y HAEZ— />
interval K F AT 0 0933474, RIRESE, K test B9TAEST T H P49 a(x) 89305 L
i, B A theorem Pk T UMPU % % T T #9 test,

A& L BRIt S critical value Ao y B RE R A Z FH T AFRIXT T A 289504 MW
Tk H, FHE % simulation, EAKA] simulation 7 k4 T H LM T8 pdf F
pdf f(x;0) i+ H i CDFF(). 1T F YA ZBMEL X RELATZ, ATARA
MY ~U([0,1]) F generate I — R FIME T ANZF] F(-) P44 T — 47149 X 18, This is

in short
Y=F,(U)—Y~F

If X is not continuous, then need to define an inverse that accounting the max of the uniform

Ir.v

Example 5.3 Jan 31st Video

5.3 Likelihood Ratio Test

LRT can be thought as an extension of NP lemma. If we know there exists an optimal test
(i.e UMP, UMPU) then the LHR will coincides with the optimal test.

Definition 5.8 (Generalized Likelihood Ratio Test) Let the hypothesis to be
Hy: 06 €0 Ha:9€®\®o

The generalized likelihood ratio is

Sup9€®0 €(X; 9)

AX) =
Supgee £(X; 6)
Then reject Hy if
AX)<c
for some c € [0, 1] and satisfies
sup Py, (A(X) <c)=a (17)
0@

HZ 42 NP 5| 2 fp sk, #+HL Shao 428 .
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Note The ®¢ and ®, can be any form and not have to be simple hypothesis. If they contains
only one point, then it becomes exactly the NP test. Also if the A(X) is well defined then A(X) < 1
since @y C ©. In this test, the all possible 6 must full in one of ®g and ®,. Even when c.d.f of
A(X) is continuous or randomized LR test are introduced, such an c satisfying (17) still does no

exist. When a UMP and UMPU test exists, the LR test is often same as the optimal test.

Example 5.4 (LR test for Uniform Distribution) Let Xy, ..., X, i.i.d from U([0, 8]) with 6 > 0.
We want to test

Hy:0=60y H,:0+#6

Since uniform is not a member of exponential family, so the previous UMPU result is not
applicable (but we are not sure if there exists an UMP test or not, there may exists). So we do

LR test here.

In this case, ®y = {0p} and ® = R*. Usually the LR test require maximize the likelihood twice,
once for the numerator (restricted under ®¢) and once for the denominator (unrestricted). Here
since ®g only contains one point so the supreme is attained at that single point. The likelihood

function here is

060) = (0%:0) = 2 T [ oar(%)
i=1

1
= 2l (X)) * Lo ) (X))
1
= 2100 (X)) # Ipx;,,00)(0)
The last step is to rewrite the expression to have the likelihood be a function of parameter. It is

easy to see the function is monotonically decreasing with 6. So
gMLE = X(n) = max{Xl, ceey Xn}

for uniform distribution. Then we have

AX) =

f(X;Q()) _ (I/QO)HI[[X(,I),oo)(GO) _ (X(n)

= = Iix,,,00 (60)
f(X; QMLE) (1/X(n))n*1 0o ) [Xtaye2)

Then find c s.t
Py, (22 1 0o) < c| =
o\ 5y [Xoo)(00) < ¢ = @
This is where we control the type one error as before. Let
X \"
Gx(n) = (0—0) I1X,00)(60)
(notice X,y is where randomness comes from). Then the rejection region becomes
{Xi 1 GXw) < ¢} = [0.G7'(©)] U [0, 00) = [0,¢"/7| U [0, 00)
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then
Poy(0 < Xiy < oc' /™) + Poo(X(ny = 60) = @

=c =0
SO C = .

Example 5.5 (Normal mean hypothesis)
Lemma 5.5 (Theorem 6.5 from Shao) The following quantity has an asymptotic property

—2log Ay —a X7 (18)

where r is the dimension of known parameter, A, = A(X) if the following regular conditions
holds:

o O is an open set

o f(x;0) is twice differentiable

o Exchangeable integral and differentiable operator
o 11(0) is positive definite

o The following inequality hold for any €

2
sup || 525 10g £x:6)],_, | < ho(x) € L'

Ily—6ll<e
Lemma 5.5 & X £ T, % —A likelihood ratio #2577 # L Z 3 A KB B, &KATT WA
JA 3 A VAL, HERR £ 237 48 R
1
\n

295 T 4% same asymptotic distribution, |7

I71(6)S.(0) ~ Vn(6, - 6)

1 —~
—=58,(60) = 11(0)Vn(6,, — 6) + 0,(1)
Vi
So the lemma tells us to reject Hy if
—2log A(X) > ¢q

where ¢ is some quantile of y? under P(—2log A(X) > q) = a.
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