
ASSIGNMENT 3 MATH60609A

quadrature & black-scholes

Shihao Tong∗

contents

1 Directional derivative and line search function 1

2 Using quadrature to replicate the Black Scholes model 2
2.1 Gaussian Hermite . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Gaussian Laguerre . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . 5

1 directional derivative and line search function

First recall the definition of directional derivative. Let x ∈ Rn, λ ∈ R and
v ∈ Rn. Also assume a function f : Rn −→ R. Assume some sufficient (may
not be necessarily, unchecked) conditions that function f and all components
of its first derivative are continuous. Then the directional derivative is defined
to be

f ′(x; v) ≡ d
dx

f (x; v) = lim
λ→0+

f (x + λv) − f (x)
λ

= vT∇f (x)

where the second equality is guaranteed by the sufficient conditions. Then
recall the target function for linear search

Θ(λ; v, x) ≡ f (x + λv)

which is a function of λ given a known point x and direction vector v. To
show the potential relationship assume the directional vector used in both
directional derivative and linear search function are the same vector v. Taking
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2. using quadrature to replicate the black scholes model

derivative w.r.t to λ for Θ we get

d
dλ

Θ(λ; v, x) = f ′(x + λv)
d
dλ

[x + λv]

= f ′(x + λv)vT

= vT∇f (x + λv)

where the fist equality is given by chain rule and the last equality is due to
inner product xTv = vTx. Then the relationship could be

d
dλ

Θ(λ; v, x)
∣∣∣∣∣
λ=0

= f ′(x; v)

or taking limit on the LHS as λ −→ 0+ also works.

2 using quadrature to replicate the black scholes
model

2.1 Gaussian Hermite

The target function to evaluate is

c(S, T, K) = SN(d1) − Ke−rTN(d2)

where S is the stock price at t = 0, T is the time at which we want to compute,
K is the strike price and c is the price of European call option. The N is the
CDF of a standard normal distribution which is

N(d1) = Φ(d1) = Pr(X ≤ d1)

where

d1 =
ln S

K + (r + σ2

2 )T

σ
√

T

d2 = d1 − σ
√

T

In order to compute N(d), we need Gaussian Hermite quadrature (GHQ). The
target integral is

N(d1) = Φ(d1) =

d1∫
−∞

1
√

2π
e−

1
2 (x)2

dx

=
1
√

2π

d1∫
−∞

e
−( x√

2
)2

dx

Recall the GHQ is defined on (−∞,∞) however our CDF is an definite integral
cut off at some fixed point d1. In order to use GHQ there are two ways to deal
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2.1. gaussian hermite

with this issue. The first one is to compute

1
2

∞∫
∞

f (x)dx ±
0∫

d1

f (x)dx

(the ± sign depends on the sign of d which is possible to be negative) where
the second integral can be approximated by any of the quadrature rules. The
second one, also the one we pick is to customize the integral boundary to
match (−∞,∞). This approach is exactly an application of change of variable.
The logic is as follows.

The aim of changing variable is to adjust the intergrand function so that the
upper bond d1 becomes ∞ which, in a more mathematical way, is to find a
function φ(y) such that φ(d) = ∞. This is not doable since in the mean while
we want φ(y) to be differentiable since recall the form of change of variable

b∫
a

f (y)dy =

φ(b)∫
φ(a)

f (φ−1(x))φ−1′(x)dx

Thus the only way this can work is to consider a limit behaviour of the function
φ(y). Formally it is

d1∫
−∞

f (y)dy = lim
y+→d1,y−→−∞

φ(y+)∫
φ(y−)

f (φ−1(x))φ−1′(x)dx =

∞∫
−∞

f (φ−1(x))φ−1′(x)dx

So we need to find a function s.t

lim
y→d1

φ(y) = ∞, lim
y→−∞

φ(y) = −∞

Then consider the natural log function which is not defined at x = 0 but has
potentially a desired limit behaviour. Thus, let

x = φ(y) = − ln(d1−y)

which then implies

y = φ−1(x) = d − e−x, dy = φ−1′(x)dx = exdx
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2. using quadrature to replicate the black scholes model

Then in our case

1
√

2π

d1∫
−∞

e
−( x√

2
)2

dx =
1
√

2π

∞∫
−∞

exp[−1
2

(d − ex)2] ∗ e2dx

=
1
√

2π

∞∫
−∞

exp[−1
2

(d − ex)2] ∗ e2 ∗ ex
2

︸                            ︷︷                            ︸
f (x)

∗ e−x
2︸︷︷︸

w(x)

dx

where last line matches the form of integration that is desirable for quadrature
which is

1
√

2π

∞∫
−∞

f (x)w(x)dx ≈ 1
√

2π

n∑
i=1

f (xi)wi

Code Comments Our code implement the summation above. Recall the
nodes {xi}ni=1 are obtained by solving the roots of the Hermite polynomial of
power n. We find a function written by David Terr and Raytheon [1] which
gives the coefficients of Hermite polynomial of order n. Then the function
root() is used to find all the roots as nodes {xi}ni=1. Then for the weights {wi}ni=1,
we used the expression from Wikipedia

wi =
2n−1n!

√
π

n2 [Hn−1 (xi)]
2

where Hn−1 represents the Hermite polynomial of order (n − 1).

2.2 Gaussian Laguerre

For the question 2.2, the Gaussian Laguerre quadrature (GLQ) is used here.
The logic is the same as GHQ while the weight function w(x) now is exp[−x].
The form of integrand is derived as follows

1
√

2π

d1∫
−∞

exp[−1
2
y2]dy = 1 − 1

2π

∞∫
d1

exp[−1
2
y2]dy

Consider changing of variable to adjust the lower bound form d1 to 0, let

x = y − d1 =⇒ dx = dy, y = x + d1
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2.3. numerical simulation

then

= 1 − 1
√

2π

∞∫
0

exp[−1
2

(x + d1)2]dx

= 1 − 1
√

2π

∞∫
0

exp[−1
2

(x + d1)2]ex︸                  ︷︷                  ︸
f (x)

e−x︸︷︷︸
w(x)

dx

where the last line matches the form of (GLQ) which is

∞∫
0

f (x)w(x)dx ≈
n∑
i=1

f (xi)wi

CodeComments Different from Q2-1, we found a function GaussLaguerre 2
written by Geert Van Damme [2] which take the order n as input and explicitly
return the nodes {xi}ni with corresponding weights {wi}ni=1. Then take the inner
product of weights vector and {f (xi)}ni=1 vector to obtain the summation.

2.3 Numerical Simulation

In this session, we conducted numerical simulations to compare the sensitivity
to different variables of two quadrature in approximating the Black-Scholes
call price.

Figure 1: Price absolute error v.s. #
nodes by two quadratures

Figure 2: Price v.s. # nodes by two
quadratures

Sensitivity to number of nodes We compare the converging rate of two
different quadrature implemented in Q2-1 and Q2-2. Figure 2 shows the
value of the call price obtained by approximation at various number of nodes
comparing to the price offered by blsprice() in Matlab. Figure 1 shows the
value of absolute error which is

ei =
∣∣∣ci − ĉi ∣∣∣
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2. using quadrature to replicate the black scholes model

at different number of nodes. It is clear that the GLQ converges to the true
value faster than GHQ.

One other thing worth notice is that the GHQ has approximated values con-
verging in a way that goes beyond and below the true value as number of
nodes increase while Laguerre’s approach is more consistent in a way that
several values will be beyond or below the true value in a row. For Gaussian
hermit, it overestimate the true price when number of nodes is even and
underestimate when number of nodes is odd.

Sensitivity to interest rate Here we compare the performance of two quadra-
ture at different interest rate r at the same number of nodes. Our trails here
take the number of nodes up to 50 since the function (either from others [1] [2]
or written by ourselves) will generate unreliable results like NaN or complex
nodes when power (which equals the number of nodes) is big ( N = 80 in our
case). This can result from the technique utilized in roots searching process
which is out of the scope of this course.

Figure 3: From left to right, top to bottom, absolute error v.s. interest rate by
GHQ and GLQ at number of nodes N = 5, 7, 10 and 30. The scale of interest
r ∈ (0.02, 0.06) incrementally at 0.01.

Figure 3 shows that given the same number of nodes with r ∈ (0.02,0.06),
the absolute error obtained by GHQ is always higher than GLQ which is as
expected from our previous discussion. What is more interesting is that the
approximation error increases as r increases using GHQ while it decreases
using GLQ except for some small N like 5.
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2.3. numerical simulation

Figure 4: Left: absolute error v.s. interest rate by GHQ and GLQ at number of
nodes N = 10; Right: absolute error v.s. interest rate by GHQ and GLQ at number
of nodes N = 30. Both on r ∈ (0, 2)

Figure 4 shows that when r is getting bigger, especially beyond 0.4 (this thresh-
old can be higher as N increases) the GHQ is no longer reliable. Its absolute
error shows periodic behaviour. However GLQ is still perfectly approximate
the true price no matter how big the interest rate is.

Sensitivity to K and S Our approach here is still fix number of nodes
and change different combination of S and K. We first use the command
meshgrid() to get different combination of (S, K) where S and K are two
matrix. Then we evaluate the price at each (Si , Ki) and plot it against the
absolute error. The graphs are shown in figure 5.

Figure 5: Left: absolute error v.s. price S and strike price K by GHQ at number
of nodes N = 40; Right: absolute error v.s. price S and strike price K by GLQ at
number of nodes N = 40.

The simulation shown above involves S and K of resolution of 0.2 both from 90
t0 110, so a 110 × 110 grid is made. Overall, comparing the two plot in figure
5, we found that at a fixed number of nodes, the significance level of absolute
error generated by GHQ is much lower (e.g. 10−3) than by GLQ (e.g. 10−1)
almost at all different combination of S and K. There performance of GHQ
and GLQ can be very similar when K and S are close to each other however
when they are even just 1$ apart, the error from GLQ increases dramatically.

Second, for GLW approach, the graph shows that the absolute error decreases
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2. using quadrature to replicate the black scholes model

when K < S while it increases when K > S. Its absolute error also shows
symmetry by the diagonal of S and k (e.g. the line where S = K). However for
the GHQ approach, the error seems to get changed upward at the line S = 100+
K. Intuitively both the phenomena should come from some multiplicative
effect of S and K. Since consider the way that the call price is computed. Let’s
use * to represent ”estimated by quadrature”

c∗(S, T, K) = SN∗(d1) − Ke−rTN∗(d2)

At fixed number of nodes, no matter which type of quadrature, N(d) does not
change. Then when K or S changes, either one at a time or simultaneously, the
error from N(d) − N∗(d) will be inflated by the multiplier K and S.
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