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1. probability space and measure

1 probability space and measure

1.1 definition. The sample space Ω = {ωi : i ∈ I} is the set of all possible
outcomes of a random experiment. Let I be a set of indices. For example,
I = {0, 1, 2, . . . , T}, I = {0, 1, 2, . . .}, I = [0,∞), etc.

A event is a subset of the sample space. Notice for example we write an event

A = {ω1,ω2}

it means ω1 or ω2 but not and.

1.2 definition. (Probability Measure) P is a probability measure on the space
Ω if :

• P(Ω) = 1

• For any event A in Ω, 0 ≤ P(A) ≤ 1

• For any mutually disjoint events A1, A2, . . .,

P

⋃
i≥1

Ai

 =
∑
i≥1

P (Ai)

where two events Ai and Aj are disjoint if Ai ∩ Aj = ∅.

Notice, disjoint is exactly the same as mutually exclusive (as one happens, the
other doesn’t happen for certain). The measure P is a set function (e.g take a
set, which is a event as input) to R. Actually in measure theory, the measure
0 ≤ P(A) ≤ ∞. Given a sample space, the probability measure is not unique.

1.3 theorem. When Card(Ω) < ∞, let’s say Ω = {ω1, . . . ,ωn} then the three
conditions in definition (1.2) of the partial definition of a probability measure are
equivalent to the following three conditions:

• ∀i ∈ {1, . . . , n},P (ωi) ≥ 0

• For any event A ⊆ Ω,P(A) =
∑
ω∈A

P(ω).

•
n∑
i=1

P (ωi) = 1

This is rather useless theorem imo. Everything is trivial the slides even made
stupid mistake stating A ∈ Ω. Then we use the above axioms to prove several
basic probability laws like P(A∪ B) = P(A) + P(B) − P(A∩ B). The proof for
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”If A ⊆ B ⊆ Ω then P(A) ≤ P(B)” is as follows

P(B) = P(A∪ (B\A))

= P (A∪ (B∩ Ac))

= P(A) + P (B∩ Ac)

1.4 definition. A random variable X is defined as a map from sample space
to the real line

X : Ω −→ R

The Ω can be a set of anything not necessarily a number.

1.5 definition. (Support of a random variable) Let X be a random variable or
vector. The support of X of that of its distribution is the set of all x s.t ∀δ > 0,

P{X ∈ (x − δ, x + δ)} > 0

To differentiate discrete and continuous r.v. we look at the support. Discrete
r.v. has a countable support (i.e. finite or countably infinite) while continuous
random variables has uncountable infinite support.

From now on we focus on discrete r.v. first.

1.6 definition. The distribution or the law of a random variable X is charac-
terized by its (cumulative) distribution function FX : R→ [0, 1] x→ F(x). So,
if P is the probability measure assigned to Ω then

∀x ∈ R, FX(x) = P
(
{ω ∈ Ω | X(ω) ≤ x}

)
Now if we reduce the Ω to a finite (e.g. card(Ω) < ∞) then we could also use
the pmf to characterize the distribution function (e.g. characterize we mean
uniquely determine the distribution). For continuoius r.v CDF but not PDF
pin down the distribution while for discrete r.v both CDF and PMF works.
The following theorem shows this

1.7 theorem. In the case where Card (Ω) < ∞, the distribution of a random
variable is also characterized by its probability mass function fX : R→ [0, 1] that
is

∀x ∈ R, fX(x) = P{ω ∈ Ω | X(ω) = x}

Proof. The logic is to show that

FX(x) ⇐⇒ fX(x)

given one then the other is uniquely determined. Detail see slides 1 appendix.
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1. probability space and measure

1.8 definition. Two random variables X and Y are said to be equal if and only
if

∀ω ∈ Ω, X(ω) = Y(ω)

They are said to be equal in distribution (or in law) when they have the same
distribution.

Clearly by theorem 1.7, if the r.v. is discrete, then equal in distribution can
be equal in either PDF or CDF. Random variables are equal =⇒ Equal in
distribution but NOT vice versa. The first statement is stronger. Equal in
distribution depends on the assigned probability measure while equal of
r.v. does not depends on probability measure. Two r.v. are equal means the
equality is point-wisely in the sample space.

1.9 definition. (σ− Algebra) Let F be a collection of subsets of a sample
space Ω.F is called a σ-field (or σ-algebra) if and only if it has the following
properties.

• The empty set ∅ ∈ F .

• If A ∈ F , then the complement Ac ∈ F .

• If Ai ∈ F , i = 1, 2, . . ., then their union ∪Ai ∈ F .

Notice the union must be countable. If further Ω is finite, then the third
condition is the same as

n⋃
i

Ai ∈ F

since there have to be finitely many events. σ-algebra is a collection of events.

1.10 definition. (Partition) A family P = {A1, . . . , An} of events in Ω is called
a finite partition of Ω if

• ∀i ∈ {1, . . . , n}, Ai , ∅

• ∀i, j ∈ {1, . . . , n} such that i , j, Ai ∩ Aj = ∅

•
n⋃
i=1

Ai = Ω

In short, it is the union of disjoint non-empty events that span the whole
sample space.

4



1.11 definition. A σ-algebra F is said to be generated from the finite partition
P if it is the smallest σ-algebra that contains all the elements of P . In that case
F is denoted σ(P ) and the elements of P are the atoms of F .

All σ-algebra have atoms.

1.12 definition. The pair (Ω, F ) is called the measurable space.

1.13 definition. (r.v. on measurable space) A random variable X constructed
on the measurable space (Ω, F ), is a real-valued function X : Ω→ R such that

∀x ∈ R,
{
ω ∈ Ω : X(ω) ≤ x

}
∈ F

It can be shown that for those Ω s.t. Card(Ω) < ∞ the definition is equivalent
to

∀x ∈ R, {ω ∈ Ω | X(ω) = x} ∈ F

The random variable X is also called F -measurable.

Notice the {ω ∈ Ω : X(ω) ≤ x} is an event so the notation is correct (e.g. it is a
set of outcomes from the sample space). The tentative proof is as follows

Proof. Let We show the =⇒ first. Let {X(1), X(2), · · · , X(n)} be in ascending
order. Then ∀ x ∈ R, i = 1, 2, ..., n

{ω ∈ Ω | X(ω) ≤ x} = {ω ∈ Ω | X(ω) ≤ X(i)}

= {ω ∈ Ω | X(ω) = X(1) or X(ω) = X(2) or · · · X(ω) = X(i)}

Since the condition is ”or” so

{ω ∈ Ω | X(ω) = X(i)} ∈ F

For those x s.t. {ω ∈ Ω | X(ω) = x} = ∅ ∈ F by the definition of σ-algebra.

1.14 theorem. Let (Ω, F ), Card (Ω) < ∞, be a measurable space and P =
{A1, . . . , An}, be the finite partition of Ω that generates F . The function X :
Ω→ R is a random variable on that space ( X is F -measurable) if and only if X is
constant on the atoms of F .

Constants can differ from events to events as long as X(ω) does not vary
for ω ∈ Ai . Proof see Chapter 1 slides page 42. One immediate result from
theorem 1.14 is that for the r.v. X on the trivial σ-algebra {Ω, ∅} is constant
since the only atoms is Ω (or ∅). By theorem 1.14 the r.v. can only takes 1 value.
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1. probability space and measure

1.15 corollary. If F = the set of all possible events in Ω (the power set of Ω)
then any real-valued function on Ω(X : Ω→ R) is F -measurable, that is to say
that X is a random variable on (Ω, F ).

1.16 definition. (σ-algebra generated by random variable) Let X : Ω → R.
The smallest σ-algebra F that make X a random variable on the measurable
space (Ω, F ) is called the σ-algebra generated by X and is denoted σ(X).

This is simply the reverse order of defining an F -measurable r.v. . Consider
the finite case or Ω. Let X(ω) ∈ {x1, x2, ..., xn}. Then we define

Ai = {ω ∈ Ω | X(ω) = xi}

Notice {A1, ..., An} form a finite partition of Ω. We call this the ”events charac-
terizing the random variable”. Then by the routine

σ(X) = σ(PX) = FX

1.17 theorem. Let’s assume that Card(Ω) < ∞. If X : Ω→ R and Y : Ω→ R are
F -measurable, then ∀a, b ∈ R, aX + bY is also F -measurable, which is to say that
any linear combination of random variables built on the same measurable space is
a random variable of that space.

Proof. Since Card(Ω) < ∞, the random variables X and Y can only take a finite
number of values, let’s say x1 < . . . < xm and y1 < . . . < yn respectively. ∀z ∈ R,

{ω ∈ Ω | aX(ω) + bY(ω) ≤ z}

=
⋃

axi+byj≤z

{
ω ∈ Ω | X(ω) = xi and Y(ω) = yj

}
=

⋃
axi+byj≤z

{ω ∈ Ω | X(ω) = xi}︸                  ︷︷                  ︸
∈F

∩
{
ω ∈ Ω | Y(ω) = yj

}
︸                  ︷︷                  ︸

∈F

∈ F .

1.18 definition. (Probability Measure) Let (Ω, F ) be a measurable space. The
function P : F → [0, 1] is a probability measure on (Ω, F ) if

• P(Ω) = 1.

• ∀A ∈ F , 0 ≤ P(A) ≤ 1.
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1.1. practice

• ∀A1, A2, . . . ∈ F such that Ai ∩ Aj = ∅ if i , j,

P

⋃
i≥1

Ai

 =
∑
i≥1

P (Ai)

1.1 Practice

Here are some good practices.

1. Let Card(Ω) < ∞. Show that if X : Ω → R and Y : Ω → R are F -
measurable then min{X, Y},max{X, Y} and XY are also F -measurable.
In addition, show that if ∀ω ∈ Ω, Y(ω) , 0 then X/Y is F -measurable.

Proof. Here we only show the proof for XY. The others are trivial and in
a similar manner. Let us show that XY is F -measurable : ∀z ∈ R,

{ω ∈ Ω | X(ω)Y(ω) ≤ z}

=
⋃

xiyj≤z

{
ω ∈ Ω | X(ω) = xi and Y(ω) = yj

}
=

⋃
xiyj≤z

{ω ∈ Ω | X(ω) = xi}︸                  ︷︷                  ︸
∈F

∩
{
ω ∈ Ω | Y(ω) = yj

}
︸                  ︷︷                  ︸

∈F

∈ F .

The takeaway point is to transfer the conditions to the union. This works
because there are countably many combination of X and Y (they are
discrete so finitely many values to take).

2 stochastic process

2.1 definition. (Stochastic Process) Let (Ω, F ) be a measurable space. A
stochastic process

X = {Xt : t ∈ T }

is a family of random variable, all built on the same measurable space (Ω, F ).

2.2 definition. (Filtration) A family F = {Ft : t ∈ T } of σ-algebras on Ω is a
filtration on the measurable space (Ω, F ) if

• ∀t ∈ T , Ft ⊆ F ,
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2. stochastic process

• ∀t1, t2 ∈ T such that t1 ≤ t2, Ft1 ⊆ Ft2 .

Filtration is also called the information set. It contains all the information re-
vealed by time t. Usually the F0 = {∅,Ω}. If we say the filtration F is generated
by the stochastic process {Xt : t = 1, · · · , n}, this means ∀t ∈ T ,

Ft = σ(X1, X2, · · · , Xt)

2.3 definition. A stochastic process X = {Xt : t ∈ T } is said to be adapted to
the filtration F = {Ft : t ∈ T } if

∀t ∈ T , Xt is Ft-measurable.

2.4 definition. (Stopping time) Let (Ω, F ) be a measurable space such that
Card(Ω) < ∞ and equipped with the filtration F = {Ft : t ∈ {0, 1, . . .}}. A stop-
ping time τ is a (Ω, F )-random variable that takes its values in {0, 1, . . .} such
that

{ω ∈ Ω : τ(ω) ≤ t} ∈ Ft , ∀ t ∈ {0, 1, . . .}

For countable set of Ω the definition is equivalent to

{ω ∈ Ω : τ(ω) = t} ∈ Ft , ∀ t ∈ {0, 1, . . .}

Consider stopping time is a decision or strategy to buy or sell a stock.
Recall the filtration can be viewed as an information set up to time t. The take
away point is that if the decision is made based on the future information
that yet to happen, then it is not a stopping time (e.g. sell the stock as soon
as it make a profit. This requires knowledge of the price at t + 1 while we
know only price up to time t). This is reflected in the definition that the event
{ω ∈ Ω : τ(ω) ≤ t}must be contained in the information set. It is reasonable to
consider the stopping to be exogeneous.

2.5 theorem. Given (Ω, F ) and a corresponding filtration F, let τ1 and τ2 are
stopping time based on the same F. Then

τ1 ∧ τ2 ≡ min {τ1, τ2} , τ1 ∨ τ2 ≡ max {τ1, τ2}

are both stopping time as well.

Proof is trivial. Meaningless to practice.

2.6 definition. (First passage/Hitting time) Let (Ω, F ) be a measurable space
such that Card(Ω) < ∞ and equipped with the filtration F = {Ft : t ∈ {0, 1, . . .}}.
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X = {Xt : t ∈ {0, 1, . . .}} represents a stochastic process adapted to that filtration.
Let B ⊆ R. We define the time until the stochastic process X first enters the
set B as

τB(ω) = min {t ∈ {0, 1, . . .} : Xt(ω) ∈ B} .

If it happened that the path t → Xt(ω) never hits the set B then we define
τB(ω) = ∞.

2.7 theorem. The random variable τB is a stopping time.

Proof. Since Card(Ω) < ∞, then ∀t ∈ {0, 1, . . .}, Xt can only take a finite number
of values. Let’s denote them by

x
(t)
1 < . . . < x

(t)
mt
.

∀t ∈ {0,1, . . .}. Actually the mt with subscript t make sense because each r.v.
Xt has different co-domain. m only can not pin down the maximum value that
Xt take. Then

{ω ∈ Ω : τB(ω) = t}

= {ω ∈ Ω : X0(ω) < B, . . . , Xt−1(ω) < B, Xt(ω) ∈ B}

=

 t−1⋂
k=0

{ω ∈ Ω : Xk(ω) < B}

 ∩ {ω ∈ Ω : Xt(ω) ∈ B}

=


t−1⋂
k=0

⋃
x

(k)
i <B

{
ω ∈ Ω : Xk(ω) = x

(k)
i

}
⋂

⋃
x

(t)
i ∈B

{
ω ∈ Ω : Xt(ω) = x

(t)
i

}
∈Ft

the last ”in” is due to adaption and
For practical purpose. How to set up the measure framework for a real-

world scenario? Usually we should consider the variable of interest as the
random variable (e.g. stock price, interest rate, balance of bank account etc.)
and the state of the world as the sample sample space Ω (e.g. some factors
that could possibly related or specify the value of the r.v. of interest). The state
of the world should be treated as deterministic otherwise it is not possible
to arrange the value of random variables. Further more, to determine the
evolution of r.v. by time, the value at t should also be determined by the state
of the world. This could be done through a function.
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3. expectation and conditional expectation

3 expectation and conditional expectation

3.1 definition. The random variables X and Y are both built on the probability
space (Ω, F ,P),Card(Ω) < ∞. Let PX = {A1, . . . , Am} and PY = {B1, . . . , Bn} be
two finite partitions that respectively generate the sigma-algebras σ(X) and
σ(Y). The random variables X and Y are said to be (pariwise) independent if

∀A ∈ PX and ∀B ∈ PY,P(A∩ B) = P(A)P(B)

By the definition, it is sufficient to just check the pairs of atoms to deter-
mine the independence. Not necessary to check every elements in σ(X) and
σ(Y). Also notice the probability measure play a role in Independence. The
definition can be extended to multiple random variables.

3.2 definition. Let X1, X2, ..., Xn be random variables defined on the same
measure space. Then they are said to be mutually independent if and only if

• They are pairwise independent

• The following rule is observed

P(
⋂
i∈S

Xi) =
∏
i∈S

P(Xi) ∀S ⊆ {1, 2, · · · , n}

Notice it is possible for r.v. to be pairwise independent but not mutually
independent.

3.3 definition. Let (Ω, F ,P) be a probability space such that Card(Ω) < ∞.
For all event A ∈ F with a positive probability, P(A) > 0, the conditional
probability given A, denoted P(• | A), is defined as

∀B ∈ F ,P(B | A) =
P(B∩ A)
P(A)

Based on conditional probability, we can define another theorem for inde-
pendence.

3.4 theorem. The random variables X and Y are both built on the probability
space (Ω, F ,P), Card (Ω) < ∞. Let PX = {A1, . . . , Am} and PY = {B1, . . . , Bn}, be
two finite partitions that respectively generate the sigma-algebras σ(X) and σ(Y). If

∀A ∈ PX s.t P(A) > 0,P(B | A) = P(B),∀B ∈ PY

or again, if
∀B ∈ PY s.t P(B) > 0,P(A | B) = P(A),∀A ∈ PX
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then X and Y are independent.

The proof is trivial. Notice that the probability of the conditioning event is
assumed to be positive. If ∃B such that P(B) = 0 we are still able to show
independence by

0 ≤ P(B∩ A) ≤ P(B) = 0 = P(A)P(B)

3.5 definition. (Expectation) Let X be a random variable built on the proba-
bility space (Ω, F ,P) such that Card(Ω) < ∞. The expectation of X, denoted
EP[X] is

EP[X] =
∑
ω∈Ω

X(ω)P(ω)

For discrete random variable, the equation is equivalent to

EP[X] =
n∑
i=1

xiP{ω ∈ Ω | X(ω) = xi} =
n∑
i=1

xifX(xi)

where xi are the possible values that X can take, fX is the pmf of X.

The common properties of expectation still holds under measurable space (e.g.
linearity). The proof for linearity is trivial. Remember the probability measure
is defined on sample space for each ω but not the sigma field. Expectation of
product is product of expectation if independent. Moment.

3.6 definition. (Conditional Expectation) The random variable X is built
on the probability space (Ω, F ,P), Card (Ω) < ∞. Let G ⊆ F , a sigma-
algebra generated by the finite partition P = {A1, . . . , An} satisfying ∀i ∈
{1, . . . , n},P (Ai) > 0. The conditional expectation of X given G, denoted EP[X |
G] is

E(X | G)(ω) ≡
n∑
i=1

E[X |Ai](ω) ∗ IAi
(ω)

=
n∑
i=1

∑
ω∈Ω

X(ω)
P(ω∩ Ai)
P(Ai)

IAi
(ω)

=
n∑
i=1

IAi
(ω)

P (Ai)

∑
ω∗∈Ai

X (ω∗)P (ω∗)

Notice the last equality is due to P(∅) = 0 by the property of (probability)
measure. Thus it can be seen conditional expectation is a random variable
due to undetermined events on G: eventually we find that the expression of
E(X | G)(ω) is a function of ω thus indeed a mapping from Ω to R.
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3. expectation and conditional expectation

3.7 lemma. (Important properties of conditional expectation) Let X and Y be
two random variables in the probability space (Ω, F ,P). Let sigma-algebras G, G1
and G2 are respectively generated by the finite partitions P = {A1, . . . , An} and
P1 = {B1, . . . , Bm} and P2 = {C1, . . . , Cn}. The following properties holds:

1. If X is G-measurable, then EP[X | G](ω) = X(ω).

2. If G1 ⊆ G2 ⊆ F are sigma-algebras, then

EP
[
EP [X | G1] | G2

]
= EP [X | G1]

3. (Tower rule or Iterated expectation) If G1 ⊆ G2 ⊆ F are sigma-algebras, then

EP
[
EP [X | G2] | G1

]
= EP [X | G1]

4. Conditioning on the trivial algebra

EP[X | {∅,Ω}] = EP[X]

5. If X is G-measurable then

EP
[
EP[X | G]

]
= EP[X]

6. If Y is G-measurable, then

EP[XY | G] = YEP[X | G]

7. If X and Y are independent, then

EP[X | σ(Y)] = EP[X]

8. ∀a, b ∈ R,
EP[aX + bY | G] = aEP[X | G] + bEP[Y | G]

Proof. Here we show the proof for properties 1,3,6 and 7 only. Notice that it is
the sample space ω that is always partitioned.

Comparing properties 1 and 4. Intuitively, the trivial sigma algebra does
not provide any information thus there is no ”randomness” in terms of in
which event the outcome happens. Thus conditioning on the trivial algebra
the expectation is a constant. However if the sigma algebra is not the trivial
set then we are not sure in which event the outcome happens so consequently
it is a random variable.
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4 martingales

4.1 definition. (Martingales) On the filtered probability space (Ω, F ,F,P),
where F is the filtration {Ft : t ∈ {0, 1, 2, . . .}}, the stochastic process

M = {Mt : t ∈ {0, 1, 2, . . .}}

is a discrete-time martingale if

1. ∀t ∈ {0, 1, 2, . . .},EP [|Mt |] < ∞

2. ∀t ∈ {0, 1, 2, . . .}, Mt is Ft−measurable;

3. ∀s, t ∈ {0, 1, 2, . . .} such that s < t,EP [Mt | Fs] = Ms. This is equivalent to

∀t ∈ {1, 2, . . .},EP [Mt | Ft−1] = Mt−1

Can be proved by induction.

Notice that the Martingale depends on both the probability measure and
the filtration F so it is also sometimes called (F,P)-martingales. To prove
a stochastic process is martingale, we just need to show the above three
properties are satisfied. The intuition of the 3rd property is that the best bet
for the future is to take the current value as prediction. Martingale process is
considered to be a ”flat line” in probabilistic view. In financial asset pricing,
”the martingality of an asset is equivalent to not being able to conduct arbitrage
through trades in that asset”.

4.2 lemma. Let M = {Mt : t ∈ {0, 1, 2, . . .}} be a martingale built on the filtered
probability space (Ω, F ,F,P). Then

∀t ∈ {1, 2, . . .},EP [Mt] = EP [M0]

This means on average a martingale process is constant. This does not
mean that the process varies a little since the variance at each time VarP(Mt)
can be infinite. Also notice here the subscript t is deterministic (e.g. for any
given t).

4.3 example. Let {ξt : t ∈ {1, 2, . . .}} be a sequence of (Ω, F )-independent and
identically distributed random variables with respect to the measure P and
such that

EP [ξt] = 0 and EP
[
ξ2
t

]
< ∞.

Let’s define
F0 = {∅,Ω}

∀t = {1, 2, . . .}, Ft = σ {ξs : s ∈ {1, . . . , t}}
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4. martingales

and

M0 = 0, Mt =
t∑

s=1

ξs.

Then show that the stochastic process M is a martingale on the space (Ω, F ,F,P).

Proof. Indeed,

EP [|Mt |] = EP


∣∣∣∣∣∣∣

t∑
s=1

ξs

∣∣∣∣∣∣∣
 ≤ t∑

s=1

EP [|ξs|] ≤
t∑

s=1

√
EP

[
ξ2
s

]
< ∞

where the second inequality comes from the fact that, for any random variable,

0 ≤ Var[|X|] = E
[
|X|2

]
− (E[|X|])2 ⇒ E[|X|] ≤

√
E
[
|X|2

]
Given the selected filtration, M is adapted (*) (which is to say that ∀t ∈
{0, 1, 2, . . .}, Mt is Ft-measurable).Lastly, ∀s, t ∈ {0, 1, 2, . . .} such that s < t

EP [Mt | Fs]

=EP

Ms +
t∑

u=s+1

ξu | Fs


=EP [Ms | Fs] +

t∑
u=s+1

EP [ξu | Fs]

=Ms +
t∑

u=s+1

EP [ξu | Fs]︸       ︷︷       ︸
=EP[ξu]

= 0

The last equation is because first, Ms is F -measurable by inception and the
independence due to {ξ1, ξ2, ..., ξs} and {ξs+1, · · · , ξt}. The independence then
brings out all the expectation equals M0 = 0. Thus it is a martingale.

Notes: * The meaning of ”adapted” is not very clear. We could consider the
fact that, for random variables based on the same measurable space (Ω, F )
then their summation, or further any basic operations like multiplication,
division etc., is still F -measurable.

4.4 definition. (Stopped process) The stochastic process X and the stopping
time τ are built on the same filtered measurable space (Ω, F ,F). The stochastic
process Xτ defined by

Xτ
t (ω) = Xt∧τ(ω)(ω)

is called a stopped process with stopping time τ.

Through time, it take the value X take until stopping time. From stopping
time onward, its value freezes at the value at stopping time. Notice the value

14



of τ(ω) is deterministic (I believe in some sense we could treat it as exogenous)
while the value for t is not.

4.5 theorem. If the martingale M and the stopping time τ are built on the same fil-
tered probability space (Ω, F ,F,P) then the stopped process Mτ is also a martingale
on that space.

Proof. Make up later. See slides 19.

4.6 theorem. (Optional Stopping Theorem) Let M = {Mt | t = 0,1, · · · } be an
martingale and τ be a stopping time both defined on the same filtered probablility
space (Ω, F ,F,P). If the following conditions hold

• EP(τ) < ∞

• EP(|Mt+1 −Mt |
∣∣∣ Ft) < c for some constant c and ∀ t

then E(Mτ) = E(M0) where we say τ is an optional stopping time.

The version of OST shown in the slides is a bit different

4.7 theorem. (Optional Stopping time) Let X = {Xt | t = 0, 1, · · · } be an stochastic
process and τ be a stopping time both defined on the same filtered probability space
(Ω, F ,F,P). Then M is a martingale IFF

EP(Xτ) = EP(X0)∀ τ s.t. 0 ≥ τ(ω) ≥ c

for some constant c (e.g. for any τ that is bounded).

Proof. The proof is exactly the same as in slides just with necessary comments.

15



4. martingales

• ” =⇒ ”: Assume X is martingale.

EP [Xτ] = EP

 b∑
k=0

XkI{τ=k}


= EP

 b∑
k=0

Xk

(
I{τ≥k} − I{τ≥k+1}

)
=

b∑
k=0

EP
[
XkI{τ≥k}

]
−

b∑
k=0

EP
[
XkI{τ≥k+1}

]

= EP [X0] +
b∑

k=1

EP
[
XkI{τ≥k}

]
−

b−1∑
k=0

EP
[
XkI{τ≥k+1}

]

= EP [X0] +
b∑

k=1

EP
[
XkI{τ≥k}

]
−

b∑
k=1

EP
[
Xk−1I{τ≥k}

]

= EP [X0] +
b∑

k=1

EP
[
(Xk − Xk−1) I{τ≥k}

]

= EP [X0] +
b∑

k=1

EP
[
EP

[
(Xk − Xk−1) I{τ≥k} | Fk−1

]]

= EP [X0] +
b∑

k=1

EP
[
I{τ≥k}EP [Xk − Xk−1 | Fk−1]

]
= EP [X0]

Comments: The second last line is because Iτ≥k is Fk−1 measurable. This
can be shown as follows. Recall Iτ≥k is defined as

I{τ⩾k} =

1, τ ⩾ k

0, τ < k

So appeal to the first principle we have{
ω ∈ Ω | I{τ⩾k} = 1

}
= {ω ∈ Ω | τ(ω) < k}c

=
{ k−1⋃

k′=0

{
ω ∈ Ω | τ(ω) = k′

} }c

τi is Fk−1-measurable for all i < (k − 1) so its union is also Fk−1-measurable.
So does its complement (due to sigma-field). why the last 3rd and 4th line?
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Optional stopping time is used to compute the expected return or risk of a
portfolio or financial assets. Also it is a proper technique to evaluate American
option.

5 discrete-time market models : binomial model

Notation and definition: We consider two type of assets which are riskless

asset and risky assets. They are represented by S(1)
t and S(2)

t respectively. We
consider t = 0, 1. They could take values as follows.

∀ω ∈ Ω, S(1)
1 (ω) = S(1)

0 (ω)(1 + r) ≡ (1 + r)

∀ω ∈ Ω, S(2)
0 (ω) = s0 ∈ R+ = (0,∞), S(2)

1 =

s11 ∈ R+

s12 ∈ R+

where r is periodic interest rate (constant through out the period); S(2)
1 can

take either s11 or s12 where s11 < s12. Assume S(1)
0 = 1 for all ω and S(2)

0 is
known for certain as s0.

The measurable space is build in a back-tracking way. Notice we want to
see how an asset evolves over time, so a trajectory should be a series of price
at each point of time. Define the two assets in a single vector

St =
(
S(1)
t , S(2)

t

)′
, t = 0, 1

as t changes we have a stochastic process. Then the process is(
S(1)

0 , S(2)
0

)⊤ (
S(1)

1 , S(2)
1

)⊤
trajectoire #1(ω1) (1, s0)⊤ (1 + r, s11)⊤

trajectoire #2(ω2) (1, s0)⊤ (1 + r, s12)⊤

Now each trajectory is equivalent to a ω ∈ Ω. This is how we inversely generate
the sample space. In practice, the sample space is not known as well. Based
on our assumption (e.g. s11, s22 etc.) there can be more than two ω in Ω while
they will be absorbed into either of the two trajectory which is

∃ω1,ω2 ∈ Ω such that ∀t ∈ {0, 1}St(ω1) = St(ω2)

In other words we are not able to specify them. The set Ω is not unique in this
sense. Thus the F = F1 = {∅,Ω, σ1, σ2}.

5.1 definition. (Portfolio) The pair

φφφ = (φ1,φ2) ∈ R × R
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5. discrete-time market models: binomial model

is called a portfolio. The value of a portfolio at state ω at time t is then

Vφφφ(t,ω) = φφφ
′
St(ω) =

2∑
i=1

φiS
(i)
t (ω)

We define that if V(0,ω) = V(0) > 0, we need to pay V to acquire the asset. If
V(0,ω) = V(0) < 0 means we will receive −V amount in acquiring the asset
(e.g. negative V means short selling and thus in debt).

Notice that φ can be negative in order to reflect possible short selling (since
price can’t be negative).

5.2 definition. We say that φφφ is an arbitrage opportunity if

1. ∀ω ∈ Ω, Vφφφ(0,ω) = 0

2. ∀ω ∈ Ω, Vφφφ(1,ω) ≥ 0

3. ∃ω ∈ Ω, Vφφφ(1,ω) > 0

i.e., starting from a zero investment (1), we are certain not to incur a loss (2)
and we have a positive probability to make a gain (3)

Comments As long as there’s price difference in the future that we know for
certain, or using such a strategy that no cost is incurred, there is arbitrage
opportunity. The existence of arbitrage has nothing to do with the price of
asset today. The (1) condition is trying to make sure we are getting money
from nowhere by short selling. The logic is actually quite simple: At t = 0 we
short sell the asset having (relative) lower price at t = 1 .

Arbitrage in One period Model Condition (1) implies

φ1 = −φ2s0 → φφφ = (−φ2s0 φ2)′

Condition (3) assures that (0, 0) is not an arbitrage opportunity and thus it is
safe to assume that φ2 , 0. Conditional (2) together with above portfolio then
implies that

Vφ (1,ω1) =

φ2 (s11 − s0(1 + r)) ≥ 0, ω = ω1

φ2 (s12 − s0(1 + r)) ≥ 0, ω = ω2

Thus we conclude

φ2 > 0 ⇐⇒ s12 > s11 ≥ s0(1 + r)

φ2 < 0 ⇐⇒ s11 < s12 ≤ s0(1 + r)

18



(Notice s11 < s12 strictly is part of the assumption of the model so the ”iff”
make sense) To interpret: First of all we need to agree that at t = 0 we need to
short sell the asset that has a relatively lower price at t = 1. Then

1. If s12 > s11 ≥ s0(1 + r), then ∀φ2 > 0 the portfolio (−φ2s0,φ2) is an
arbitrage opportunity. This means we perform the following procedure:

• Short sell ns0/1 share of riskless asset to buy ns0/s0 = n share of
risky asset. In this case φφφ = (−ns0 n)′. The amount paid out is then

Vφ(0) = −nS0 + nS0 = 0

• At t = 1 we repurchase the share of risk-less asset and give it back

at price (1 + r) and sell risky asset at price S(2)
1 (ω) the net amount is

then

∆Vφ = Vφ(1,ω) − Vφ(0,ω) = Vφ(1,ω)

=

ns11 − ns0(1 + r) = n (s11 − s0(1 + r)) ≥ 0 if ω = ω1

ns12 − ns0(1 + r) = n (s12 − s0(1 + r)) > 0 if ω = ω2

2. If s11 < s12 ≤ s0(1 + r), then ∀φ2 < 0 the portfolio (−φ2s0,φ2) is an
arbitrage opportunity. This means we perform the following procedure:

• Short sell n shares of risky asset and purchase ns0 share of riskless
asset. In this case φφφ = (ns0 − n)′. The amount paid out is then

Vφ(0) = ns01 − ns0 = 0

• At t = 1 we repurchase the share of risky asset and give it back at

price S(1)
2 (ω) then the net amount paid is then

∆Vφ = Vφ(1,ω) − Vφ(0,ω) = Vφ(1,ω)

=

ns0(1 + r) − ns11 = n (s0(1 + r) − s11) > 0 if ω = ω1

ns0(1 + r) − ns12 = n (s0(1 + r) − s12) ≥ 0 if ω = ω2

Actually the ∆V is the net profit not the net amount paid.

This is saying that there is no arbitrage opportunity if

s11 < s0(1 + r) < s12

5.3 definition. (Contingent claim) A contingent claim is a contract between
two parties, a seller and a buyer, the value of which will depend on the state
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5. discrete-time market models: binomial model

of the market during the contract validity period. It is like an insurance
contract. Mathematically speaking, a contingent claim C is any non-negative
(Ω, F )-random variable.

In short option is a type of contingent claim. Then we use the one period
model to price the option. The idea to price the contingent claim is to match
the price of contingent claim and price of portfolio at t = 1. Why? The logic to
match the value is not quite clear. Let’s consider the (Ω, F ) generated by the
above assets in a one period model. To match the price we have

∀ω ∈ Ω, Vφ(1,ω) = C(ω)

⇔φ1(1 + r) + φ2s11 = c1 and φ1(1 + r) + φ2s12 = c2

⇔
(
φ1
φ2

)
=

 s12c1−s11c2
(s12−s11)(1+r)

c2−c1
s12−s11


and consequently the portfolio value at t = 0 is

Vφ(0,ω) = Vφ(0) =
c1

1 + r

s12 − s0(1 + r)
s12 − s11︸            ︷︷            ︸

q

+
c2

1 + r

s0(1 + r) − s11

s12 − s11︸            ︷︷            ︸
1−q

and we derive the new probability measure Q which is

Q(ω1) = q, Q(ω2) = 1 − q

This make sense since c1 and c2 are the values of a random variable (e.g. actu-
ally the contingent claim price) at t = 1 in two state of the world respectively
and consequently

Vφ(0,ω) =
1

1 + r
EQ[C]

where we use C the express the price of contingent claim at t = 1 and (1 + r)−1

is the discount factor. Now we have (Ω, F ,Q). Another important implication
is that no arbitrage opportunity ⇐⇒ q ∈ (0, 1).

Risk Neutral Measure Q The probability measure derived form above is
called risk neutral measure. The reason to be called neutral is as follows.
Define the return of asset at time t to be

RS(t,ω) =
St(ω) − St−1(ω)

St−1(ω)

5.4 fact. Under any probability measure P the expected return of the riskless
asset in a {0, 1} period is r.
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Proof.

EP [RS(1)(t = 1)] =
∑
ω∈Ω

S(1)
1 (ω) − S(1)

0 (ω)

S(1)
0 (ω)

P(ω)

=
∑
ω∈Ω

(1 + r) − 1
1

P(ω)

=
∑
ω∈Ω

rP(ω)

= r.

5.5 fact. The return of a risky asset depends on the probability measure. The
general form is

EP [RS(2)(1)] =
2∑
i=1

S(2)
1 (ωi) − S(2)

0 (ωi)

S(2)
0 (ωi)

P (ωi)

=
s11 − s0

s0
P (ω1) +

s12 − s0

s0
P (ω2)

Notice this is usually different form the physical probability in the real
world since the probability measure can hardly be the same as physical proba-
bility. Also as we can see the expected return for risky and riskless asset are
usually not equal. However under the measure Q they are equal which is

EQ [RS(2)(1)] =
s11 − s0

s0
Q (ω1) +

s12 − s0

s0
Q (ω2)

=
s11 − s0

s0

s12 − s0(1 + r)
s12 − s11

+
s12 − s0

s0

(
1 − s12 − s0(1 + r)

s12 − s11

)
=r

What this imply is important: On the probability space (Ω, F ,Q), there is no
benefit associated with risk, the expected return on the risky security is the same as
the one on the riskless security.

Equivalent Martingale Measure (EMM) The measure Q derived above is
also called a EMM.

5.6 fact. On the filtered probability space (Ω, F ,F,Q), the discounted price

processes of the securities
{

S(i)
t

(1+r)t : t = 0, 1
}

are martingales.
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5. discrete-time market models: binomial model

Proof. We check the third condition of martingle only. For riskless asset

EQ

 S(1)
1

1 + r
| F0

 = EQ
[1 + r
1 + r

| F0

]
= 1

=
S(1)

0

(1 + r)0 .

For risky asset

EQ

 S(2)
1

1 + r
| F0

 = EQ

 S(2)
1

1 + r


=

2∑
i=1

S(2)
1 (ωi)
1 + r

Q (ωi)

=
s11

1 + r
Q (ω1) +

s12

1 + r
Q (ω2)

=
s11

1 + r

s12 − s0(1 + r)
s12 − s11

+
s12

1 + r

s0(1 + r) − s11

s12 − s11

= s0

=
S(2)

0

(1 + r)0 .

In reality for most of security

EP

 S(2)
1

1 + r
| F0

 > s0
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6 replication and risk neutral measures

This section is base on the paper from Harrison & Pliska.

Model Setup

1. We work on the filtered probability space (Ω, F ,F,P) where Ω is finite
|Ω| < ∞. Let the probability measure P to be the real world physical
probability.

2. ∀ω ∈ Ω we have P(ω) > 0. All participates in the market agrees that Ω
includes all possible state of the world.

3. The time scale is finite T = {0, 1, · · · , T}.

4. In terms of filtration we impose the following restriction:

(a) F = {Ft : t ∈ T } where we assume F0 = {Ω, ∅} and FT is the power
set of F the largest σ-algebra.

(b) Pt = {At
1, At

2, · · · , At
nt
} s.t. Ft = σ(Pt).

(c) F describes how information is revealed at time t. For example at
time t, investors can distinguish between Ai

t and Aj
t in Pt while they

can’t distinguish between ω with in Ai
t. Also F0 = {Ω, ∅} implies the

price at t = 0 is constant s0 known for certain.

(d) In total (k + 1) assets are modeled indexing as 0, 1, · · · , k. The price
evolution of all security is

S = {St : t ∈ T }

where St ∈ Rk+1. Each of the Si
t indicates the price of unit share of

security i.

5. For those price process we assume the following

(a) S is F-adapted(e.g. ∀ t the price Si
t is Ft measurable).

(b) Si
t > 0 the price is strictly positive.

(c) S0 = {S0
t : t ∈ T } is considered as the risk free security. Since is risk

free then it’s safe to assume:

i. S0
t ≤ S0

t+1 for any t = 0, 1, · · · , T − 1

ii. ∀ω ∈ Ω we assume S0
0(ω) = 1

(d) Define the discount factor

βt =
1

S0
t

as a scalar stochastic process (e.g. same across ω but vary with t).
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6. replication and risk neutral measures

Model

6.1 definition. (Predictable process) As stochastic process X = {Xt : t ∈ T } is
predictable if

1. X0 is F0-measurable

2. Xt is Ft−1-measurable.

The second condition means that all events characterizing distribution of
Xt is captured in Ft−1. An example is a deterministic process that X0 = a is
F0-measurable.

6.2 definition. A trading strategy is a predictable vector stochastic process

φφφ = {φφφt : t ∈ {1, . . . , T}}

where the random row vector φφφt =
(
φ0
t ,φ

1
t , . . .φ

K
t

)
represents the investor’s

portfolio at time t : φk
t = the number of shares of security k held at time t.

Moreover we define φk
t be the portfolio held by the investor during (t−1, t], t =

1, 2, · · · , T

It is actually crucial to distinguish a strategy and a portfolio while in the
lecture and also in this documents we still mix the use of them such that both
of them are represented as φφφ.

The (t − 1, t] assumption make sense. In order to show predictable, we
allow investor to chose the portfolio right after time t. So the portfolio held
at time t should base on a decision made depending on Ft−1. Conventionally
the process V(φφφ) = {Vt(φφφ) : t ∈ {0, 1, . . . , T}} represents the market value of the
strategy at any time.

Vt(φφφ) =


φφφ′1S0 if t = 0

φφφ′tSt =
k∑

i=0
φi
tS

i
t if t ∈ {1, . . . , T}

6.3 definition. (Self-financing Strategy) We say a strategy is self-financing if
no funds are added to or withdrawn from the value of the portfolio after time
t = 0, i.e.

∀t ∈ {1, . . . , T − 1},φφφ
′
tSt = φφφ

′

t+1St

Where φφφ
′
tSt is the amount we receive if we liquidated the portfolio φφφ

′
t at t

and φφφ
′

t+1St is the amount we pay to acquire the new portfolio φφφ
′

t+1. This means
no money is add to or withdraw from the portfolio however the composition
of the portfolio can changes. It is a refinance process.
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6.4 definition. (Admissible Strategy) The set of strategy Φ is said to be ad-
missible if

1. Each component φk of φφφ is predictable

2. φφφ is self-financing

3. For any t ∈ T , Vt(φφφ) ≥ 0

If change the last condition to be VT(φφφ) ≥ where the value of the portfolio is
positive only for T, then it’s the relaxed version of admissible strategy.

The relaxed version allows the value to be negative for t < T due to
shortselling.

6.5 definition. An admissible strategy φφφ is an arbitrage opportunity if

V0(φφφ) = 0 & EP [VT(φφφ)] > 0

Notice the second condition implies that

EP [VT(φφφ)] =
∑
ω∈Ω

VT(φφφ,ω)︸   ︷︷   ︸
≥0

P(ω)︸︷︷︸
>0

so there exists at least one ω s.t. VT(φφφ,ω) > 0. So, the strategy φφφ is an arbitrage
opportunity when, while investing nothing (V0(φφφ) = 0), we are assured not to
lose any money (VT(φφφ,ω) ≥ 0 since φφφ is admissible) and we have a positive
probability to make a gain (∃ω ∈ Ω for which VT(φφφ,ω) > 0). Notice here the
time is at big T so we only try to make sure the arbitrage works in the end of
the investment period.

6.6 definition. (Contingent Claim in multi-period model) A contingent claim
X is a (Ω, FT)− non-negative random variable. Mathematically

X = the set of contingent claims

=
{

X
∣∣∣∣∣ X is a (Ω, FT) − random variable

such that ∀ω ∈ Ω, X(ω) ≥ 0

}

6.7 definition. A contingent claim X is said to be attainable if there exists an
admissible trading strategy φφφ that can replicate the cash flow generated by X,
i.e. VT(φφφ) = X has the same value as the contingent claim at T.

25



6. replication and risk neutral measures

It worth notice that VT(φφφ) is indeed FT-measurable. I assume we just want to
model the outcome of the cc at maturity T and we don’t care about the value
of cc during the period before maturity.

6.8 definition. (Price System) A price system π is a linear operator on X that
returns non-negative values π : X→ [0,∞) and that satisfies

π(X) = 0⇔ X = 0

and
∀a, b ∈ R and ∀X1X2 ∈ X,π (aX1 + bX2) = aπ (X1) + bπ (X2)

The price system tries to attach a price to each of the possible contingent
claim. Also an important fact is that

VT(φφφ) ∈ X

for any admissible strategy φφφ. In short the value of an admissible strategy at
time T (end of the maturity period) is an contingent claim. Notice VT(φφφ) is an
random variable. It’s easy to check it’s a map from Ω→ R.

6.9 definition. A price system is said to be consistent with the market model
if the price associated with the contingent claim VT(φφφ) is its market value at
time t = 0, V0(φφφ), i.e.

π (VT(φφφ)) = V0(φφφ)

6.10 definition. Let Π be the set of consistent price system. It is defined to be
π : X→ [0,∞)

∣∣∣∣∣∣
π(X) = 0⇔ X = 0

∀a, b ≥ 0 and ∀X1, X2 ∈ X,

π (aX1 + bX2) = aπ (X1) + bπ (X2)

∀φφφ ∈ Φ,π (VT(φφφ)) = V0(φφφ)


Is π trying to price the CC at time 0?

6.11 definition. (Equivalent risk-neutral or martingale measures (EMMs))
Let QP be the set of Equivalent martingale measure of probability measure P.
It is defined to be

QP =

Q |
Q is a probability measure on (Ω, F ),

∀ω ∈ Ω, Q(ω) > 0 and
∀k ∈ {0, 1, . . . , K}, βSk is a Q - martingale.


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where
βSk =

{
βtS

k
t : t ∈ T

}
The EMM is just a convenient tool to price contingent claim.

6.12 definition. (Equivalent probability measure) Let P and Q be two prob-
ability measures that exist on the measurable space (Ω, F ). The measures P
and Q are said to be equivalent if and only if the impossible events are the
same under both measures, i.e.

∀A ∈ F , P(A) = 0⇔ Q(A) = 0

In our case, since ∀ω ∈ Ω, P(ω) > 0, all measures Q equivalent to P shall
satisfy the condition

∀ω ∈ Ω, Q(ω) > 0

6.13 theorem. Proposal. There is bijective correspondence between the set Π of
price systems that are consistent with the market model and the set P of martingale
measures equivalent to P. Such as correspondence is

π(X) = EQ [βTX] , X ∈ X

Q(A) = π
(
S0

TIA

)
, A ∈ F

Interpretation

1. If we know a martingale measure Q equivalent to P, then we can build
a consistent price system π by setting ∀X ∈ X,π(X) = EQ [βTX]

2. On the other hand, if a price system π consistent with the market model
is available, then we can build a martingale measure Q equivalent to P
by defining ∀A ∈ F , Q(A) = π

(
S0

TIA

)
3. On the other hand, if a price system π consistent with the market model

is available, then we can build a martingale measure Q equivalent to P
by defining ∀A ∈ F , Q(A) = π

(
S0

TIA

)
4. Such a proposal tells us that, if there exists a martingale measure equiv-

alent to P or if there exists a price system consistent with the market
model, then both exist, and the proposal establishes the link between
them.

5. However, nothing allows us to show that either of such two objects exist.
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6. replication and risk neutral measures

6.14 lemma. (Page 228) If there exists a self-financing strategy φφφ (not necessarily
admissible) such that V0(φφφ) = 0, VT(φφφ) ≥ 0 and EP [VT(φφφ)] > 0, then there exists
an arbitrage opportunity.

6.15 theorem. (Fundamental theorem of Asset Pricing FTAP 1) The market model
contains no arbitrage opportunities if and only if there exists at least one martingale
measure equivalent to P.

The proof is omitted. it can be found in slides Theorem 2.7. Together with
theorem 6.13, they provides the following logic flow:

No arbitrage opportunity→ ∃Q ∼ P→ π(X) = EQ [βTX] , X ∈ X

If no arbitrage opportunity then by theorem 6.15 there exists equivalent
probability measure Q. Then by proposal 6.13 we are able to build a consistent
price system π.

6.16 corollary. Corollary on page 228. If the market model contains no arbitrage,
then there is a single price associated with any attainable contingent claim X and
it satisfies

π = EQ [βTX] ∀Q ∼ P

The logic is that if there’s no arbitrage opportunity then there can be more
than one equivalent probability measure Q to P and thus there’s theorem tells
us there can more more than one consistent price system. What corollary
6.16 says is that the price for any attainable price agree across different price
systems.

6.17 theorem. (Proposal 2.8) Ifφφφ is an admissible strategy, then the process βV(φφφ),
representing its discounted market value, is a Q-martingale for each measure
Q ∼ P.

The proof is easy. Just remember to use the the fact in definition 6.11 that
βSk is a Q-martingale and thus

EQ[βkt Sk
t | Ft−1] = βkt−1Sk

t−1

6.18 theorem. Proposal 2.9. If X ∈ X is an attainable contingent claim, then

βtVt(φφφ) = EQ [βTX | Ft]

for any trading strategy φφφ which generates X and for each measure Q ∈ QP.
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Interpretation If the contingent claim X can be replicated with strategy
φφφ, VT(φφφ) = X, then the market value of such a contingent claim must be, at
any time, equal to the market value of the strategy, otherwise, there is a way
to create an arbitrage opportunity. This also can be shown in mathematical
way as follows

placeholder

The short selling scenario is as follows. the logic why no arbitrage is not clear.

Recall we always short sell the on of the asset which has relatively lower
price or in other words the one whose relative price drops in the future. In this
case since at maturity T we know φφφ will exactly match the value (price) of the
cc (e.g. assumption of the theorem that X is generated by some φφφ), so if there’s
price discrepancy before T there will be arbitrage opportunity. Furthermore,
we could also use the discrepancy price at t to by riskless asset for profit. Not
finished yet

6.19 lemma. One of the implication form theorem 6.18 is that

Xt = Vt(φφφ) =
1
βt
EQ [βTX | Ft]

which price the contingent calim at any given time t.

6.20 definition. (Complete Market) A market is said to be complete if it
contains no arbitrage opportunity and if all contingent claims are attainable.

Recall from corollary 6.16, attainable cc in risk free market have unique
price across different price systems (e.g. indeed probability measure). However
for those cc that are NOT attainable we can not find a portfolio replicating its
cash flow. There price is then not unique.

6.21 theorem. A market is complete if and only if there exists a single martingale
measure. On the contrary, the arbitrage-free market is incomplete if there exists at
least one cc that is not attainable.

Notice there can be attainable cc in incomplete market and its price is
unique. Theorem 6.21 tells that based on FTAP, if there exists only one measure
equivalent to P then market is complete; if there’s more than one then the
market is not complete.

In practice we are given the price process and we want to check if the
market is complete to design an arbitrage strategy. There are tow ways to
do this. The first one is based on theorem 6.21. The logic is to check if the
discounting process {Sk

t βt}t with given prices over time allows unique solution

29



6. replication and risk neutral measures

to Q(ω). The equations are given byE
Q[Sk

t βt | Ft−1] = Sk
t−1βt−1 ∀k∑

ω∈Ω
Q(ω) = 1

This set of equations can be turned into a linear system and we solve or check
the solution situation. Then eventually if the solution is unique then market
is complete otherwise not. Another approach is that we form a linear system
as follows based on the definition 6.20. This approach is to solve a system
of linear equation built based on the fact that all cc in complete market are
attainable.

To set up the framework. Consider a one-period model where T = {0,1}
and k + 1 security St = {S0

t , S1
t , · · · , Sk

t } defined on (Ω, F ) (we also use the
set of asset S to represent the ”market”). Let Card(Ω) = n. The logic is then
since all cc are attainable in a complete market this means ∀ X ∈ X, ∃φφφ s.t.
VT(φφφ) = XT ∀ω ∈ Ω. Expand the above equation we have

VT(φφφ,ω) =
k∑

i=0

φi
TSi

T(ω) = X(ω)

since this have to work for all ω thus we set up the following system

AφφφT =


S0

T(ω1) S1
T(ω1) · · · Sk

T(ω1)
S0

T(ω2) S1
T(ω2) · · · Sk

T(ω2)
· · · · · · · · ·

S0
T(ωn) S1

T(ωn) · · · Sk
T(ωn)

 =


X(ω1)
X(ω2)
· · ·

X(ωn)

 = X

where the columns range over all k + 1 securities and the rows range over
all possible state of the world. Thus in order to have all equations satisfied,
the system should have unique solution thus equivalently the rank of A must
have full rank. Noitce that in terms of the matrix, n ≤ k + 1. The number of
rows must be equal to the number of states since we want our equations to be
met at each of every states.

To extend this to a multi-period model of T = {0,1, · · · , T} we just have
to check that at every time t ∈ T , all matrix involved have to be of full rank.
This is guaranteed by lemma 6.19.

6.22 theorem. Assume a one-period model M =
(
s0, s1, . . . , sk

)
. Then a cc is

attainable iff

X0 = EQ
[

1

S0
T

X
]

have the same value across all EMMs Q ∼ P
Notice no matter in a complete or incomplete market, the price associated to a
contingent claim are always equal across those EMMs as long as the market
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is arbitrage free. However for those that are not attainable, the price are not
unique (e.g. differ EMM generate different price).

6.23 theorem. (FTAP 2) An arbitrage-free market is complete iff there exists a
unique EMM to P.

The two FTAP can be summarised as the graph below.

The proof in =⇒ does not make sense. The proof should based on the fact
that it works for all cc. However the proof takes only one specific X?

7 application : price the european and american
style option

The model set up are exactly the same as introduced in the beginning of
chapter 6.

7.1 definition. A European-style contingent claim is a non-negative random
variable, FT-measurable since the said contingent claim can only be exercised
at maturity, that is at time T.

7.2 definition. An American-style contingent claim, by contrast, can be rep-
resented as an F-adapted stochastic process X = {Xt : t = 0, 1, . . . , T} where Xt

represents the contingent claim value at time t if it is exercised at that time.

The holder of European option has no right to exercises until maturity
date T while American option holder can chose to exercise during the life time
of the option. Thus the time to exercise an American option is a stopping time.
The set of those stooping time is defined to be in a set

Λ0 = {τ : Ω −→ T = {0, . . . , T} | τ is a stopping time }

the subscript 0 indicates the set is about admissible exercising time when we
are at time 0. Now consider the following definition

τττ :{Ω} −→ T Card(Ω) ⊆ RCard(Ω)

τττ(Ω)→
[
τ(ω1), · · · , τ(ωCard(Ω))

]′
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7. application: price the european and american style option

The expression is not quite rigorous Need some proper definition from func-
tion space I believe. The logic is as follows. We may not know the exact rule
of a random time sequence (e.g. for example the time when the discounted
expected value maximized). However, since T is a finite set, then there are
also just finitely many possible results of those random time sequence which
is |T |Card(Ω). Thus wee can narrow down our set of all random sequences to a
set of stopping time by checking the definition of stopping time.

7.3 example. Let’s consider an American-style contingent claim, a put option
with an 80-dollar strike price. The value of such a put at time t, if the put is
exercised, is

Xt = max
{
80 − S1

t , 0
}

and its discounted value at time t, if again the put is exercised, is

Yt = βtXt = (1 + r)−t
{
80 − S1

t , 0
}

= 1.115−t max
{
80 − S1

t , 0
}

Once again, the filtration is determined by the price process of all asset. That
is, the ST

t=1 process. The price process is given as follows. The price process is
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given and the values of the discounted process is given as follows.

ω

(
S0

0(ω)
S1

0(ω)

) (
S0

1(ω)
S1

1(ω)

) (
S0

2(ω)
S1

2(ω)

) (
S0

3(ω)
S1

3(ω)

)
Q(ω)

ω1

(
1

80

) (
1.115
100

) (
1.1152

125

) (
1.1153

156, 25

)
0.343

ω2

(
1

80

) (
1.115
100

) (
1.1152

125

) (
1.1153

100

)
0.147

ω3

(
1

80

) (
1.115
100

) (
1.1152

80

) (
1.1153

100

)
0.147

ω4

(
1

80

) (
1.115
100

) (
1.1152

80

) (
1.1153

64

)
0.063

ω5

(
1

80

) (
1.115

64

) (
1.1152

80

) (
1.1153

100

)
0.147

ω6

(
1

80

) (
1.115

64

) (
1.1152

80

) (
1.1153

64

)
0.063

ω7

(
1

80

) (
1.115

64

) (
1.1152

51.20

) (
1.1153

64

)
0.063

ω8

(
1

80

) (
1.115

64

) (
1.1152

51.20

) (
1.1153

40.96

)
0.027

Then the discounted price process Yt is

ω Y0 Y1 Y2 Y3
ω1 0 0 0 0
ω2 0 0 0 0
ω3 0 0 0 0
ω4 0 0 0 16

1.1153 � 11.5424
ω5 0 16

1.115 � 14.3498 0 0
ω6 0 16

1.115 � 14.3498 0 16
1.1153 � 11.5424

ω7 0 16
1.115 � 14.3498 28.80

1.1152 � 23.1656 16
1.1153 � 11.5424

ω8 0 16
1.115 � 14.3498 28.80

1.1152 � 23.1656 39.04
1.1153 � 28.1634

Now define a random time process of interest (want to check if it’s a valid
stopping time) as ”for each ω, a time when the option value is the greatest”.
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7. application: price the european and american style option

Then we find that

τ(ωωω) = [τ (ω1) , τ (ω2) , τ (ω3) , τ (ω4) , τ (ω5) , τ (ω6) , τ (ω7) , τ (ω8)]′

=(3, 3, 3, 3, 1, 1, 2, 3)′

If we check that t = 2, then we find {ω ∈ Ω : τ(ω) = 2} = {ω7} < F2 so it is not a
valid stopping time.

Now think in a way that the rule of a stopping time is not given. We
consider all the possible result, that is the co-domain of a τττ. Thus there will be

|T |Card(Ω)

number of results. We can actually check whether each of them is a valid
stopping time or not in the same manner as above example. The definition of
τττ have to be revised. Λ0 is the set of VALID stopping time. The logic discussed
below is picking items from a space of all random time sequences.

Decision on American Option Exercises

7.4 definition. (Formulation of Snell’s problem) Let Y = {Yt : t = 0, 1, . . . , T}
be a stochastic process, F-adapted. For all t ∈ {0,1, . . . , T}, we can define the
set of stopping times taking their values in the set {t, . . . , T} :

Λt = {τ : Ω −→ {t, . . . , T} | τ is a stopping time}

Note that ΛT ⊆ ΛT−1 ⊆ . . . ⊆ Λ0 Make up a formal proof here. Logic is that
if we consider the Λt as set of τττ under definition 7.2, then as t decreases, we
simply eliminated a column of St so there’s less choice of each of the element
in the vector. Snell’s problem is as follows: can we determine a stopping time
τ∗ ∈ Λ0 satisfying

E [Yτ∗] = sup
τ∈Λ0

E [Yτ]

In other words, we are looking to determine, for each of the ω ∈ Ω, the time
τ∗(ω) when we should stop the stochastic process Y in order to maximize the
expected value of the random variable Yτ.

7.5 example. Let’s assume that ∀t ∈ {0,1, . . . , T}, Ft = {∅,Ω}. Under such
conditions, since Yt is Ft−measurable, then Yt is constant, i.e. there exists a
real number yt for which

∀ω ∈ Ω, Yt(ω) = yt

That is we can group all trajectory into one single path. In this case our
stopping time is also deterministic: Consider

Λ0 = {τ0, τ1, . . . , τT}
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(the τt is like the column vector in example 7.3) {ω : τ(ω) = t} ∈ Ft = {∅,Ω}
(e.g. τ is {∅,Ω}-measurable so can only take one constant value across ω which
is τt(ω) = t). Then this problem turns to be

yt∗ = max
t∈{0,1,...,T}

yt

The procedure is as follows. The basic idea is to introduce an auxiliary se-
quence {zt : t = 0, 1, . . . , T} defined as

zt = max
u∈{t,...,T}

yu

Note that this sequence is decreasing (actually non-increasing. There have
to exists some = otherwise otherwise the whole sequence is constant) (i.e.
∀t ∈ {1, . . . , T}, zt ≤ zt−1) and

zt = max {yt , zt+1}

Let’s set
t∗ = min {t ∈ {0, 1, . . . , T} | zt = yt}

and let’s show that t∗ satisfies equation we want.

A General Case What we want is now just to build a correct form of de-
creasing sequence zt satisfying zt = max {yt , zt+1}.

Let’s set

Zt =
{

YT if t = T
max {Yt ,E [Zt+1 | Ft]} if t ∈ {0, . . . , T − 1}

Interpretation. Zt represents, conditionally to the information available at
time t, the maximum between the discounted value of the option if it is
exercised at that time and its expected discounted value if it is exercised
subsequently, at a time judiciously chosen. Zt is thus the discounted value of
the American option at time t. Then there are 2 cases happens at each point
of time t:  Yt ≥ E [Zt+1 | Ft] =⇒ Zt = Yt =⇒ Exercises

Yt < E [Zt+1 | Ft] =⇒ Zt , Yt =⇒ Don’t exercise

Notice, when we try to specify the atoms of Ft, it is determined by the S
process which contains all possible assets. It is not determined by the process
of Yt.
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8. brownian motion

8 brownian motion

We starts by introducing the continuous time process. Consider a continuous
time process with the following properties:

• The value that the variable takes can change at any point in time and
from moment to moment.

• It can take any real number as value.

• The value have to change continuously with no jump (e.g. if considers
the process as a function of time then it is continuous in time).

• It takes value at random

No we will construct the continuous time process based on single period
binomial model. Consider on single period binomial model with

St =

uSt−1 , upward price movement

dSt−1 , downward price movement

where 0 < d < 1 < u. Consider on a time line from 0 to t ∈ Z and between
each 1 unit of time there are n times of price movements happened (e.g. in
total nt ∈ Z time of movements). Also we assume:

(a) For each binomial movement, the upward and downward factors de-
pends on n and σ > 0, the volatility of price are the same over time
which are in form un = 1 + σ√

n

dn = 1 − σ√
n

(b) The risk neutral probability q = 0.5 and 1 − q = 1 − 0.5 = 0.5

Then we define Nu(ω) and Nd(ω) as the number of upward and downward
movements over time [0, t] at a given state ω. Thus the price at time t is then
given by

St,n(ω) = S0

(
1 +

σ
√
n

)Nu(ω) (
1 − σ
√
n

)Nd (ω)

The following theorem shows the asymptotic behaviour of the above price.

8.1 theorem. As n→∞, the distribution of St,n converges to

St,n(ω) −→d St(ω) = S0 exp
{
σWt(ω) − 1

2
σ2t

}
where Wt(ω) is a normal random variable with mean zero and variance t.

Comments: The Ω can also be uncountable defined using Borel set. Now
in this case we only deal with finite Ω.
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8.1. brownian motion

8.1 Brownian Motion

8.2 definition. A standard Brownian motion {Wt : t ≥ 0} is an adapted stochas-
tic process, built on a filtered probability space (Ω, F ,F,P) such that:

(a) ∀ω ∈ Ω, W0(ω) = 0

(b) ∀0 ≤ t0 ≤ t1 ≤ . . . ≤ tk , the random variables Wt1−Wt0 , Wt2−Wt1 , . . . , Wtk−
Wtk−1

are independent (for any given ω)

(c) ∀s, t ≥ 0 such that s < t, the random variable Wt − Ws is normally
distributed with expectation 0 and variance t − s i.e. Wt −Ws ∼ N(0, t − s)

(d) ∀ω ∈ Ω, the path t → Wt(ω) is continuous (continuous in t)

In short, a Brownian motion is a stochastic process that is continuous in
time, starting with value 0, with independent and normally distributed
increments over time. The definition, cdf and pdf of normal r.v. is omitted.
Just remember that independence implies 0 covariance but not vice versa.
Also notice the BM is adapted to F by definition so Wt is always Ft measurable.
The reverse is true only if both random variables are normally distributed.
This is in short:

8.3 fact. Let X ∼ N(0, σ2
1) and Y ∼ N(0, σ2

2). Then

X⊥Y ⇐⇒ Cov(X, Y) = 0

Filtration The most often used filtration for Brownian motion is F =
{Ft : t ≥ 0}

Ft = σ({Ws : 0 ≤ s ≤ t} ∪ N )

where N is the collection of 0 measure events. This is also the smallest
σ−algebra for which the Ws : s ∈ [0, t] are measurable (smallest since it is
exactly generated by the r.vs). What is the sigma algebra generated by a contin-
uous r.v? The sigma algebra still meet the following properties as in discrete
case:

• ∀0 ≤ s ≤ t, Fs ⊆ Ft (as much information as there in the later earlier
time)

• (Adaptivity) For any t ≥ 0, the Brownian motion Wt is Ft measurable
(the information at t is sufficient to evaluate Wt at time t).

• (Independence of future increment) ∀0 ≤ t < u, the incremental Wu −Wt

is independent of Ft (any increment of the Brownian motion after t is
independent of the information at time t).
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8. brownian motion

8.4 lemma. Let {Wt : t ≥ 0} be a standard Brownian motion. Then

• ∀s > 0, {Wt+s −Ws : t ≥ 0} (time homogeneity)

• {−Wt : t ≥ 0} (symmetry)

•
{
cW t

c2
: t ≥ 0

}
(time rescaling)

•
{
W∗t = tW1

t
1t>0 : t ≥ 0

}
(time inversion)

are also standard Brownian motions.

How to show the time inversion is also a standard BM?

Proof. Just show the time homo case. make up later

8.5 definition. (Martingale in continuous time) On the filtered probability
space (Ω, F ,F,P), where F is the filtration {Ft : t ≥ 0}, the stochastic process
M = {Mt : t ≥ 0} is a martingale in continuous time if

• ∀t ≥ 0,EP [|Mt |] < ∞;

• ∀t ≥ 0, Mt is Ft - measurable;

• ∀s, t ≥ 0 s.t. s < t,EP [Mt | Fs] = Ms.

Nothing different from discrete case since the Ω is still finite.

8.6 theorem. The Brownian Motion is an Martingale process.

Proof. Easy to check the expectation of |Wt | is finite. Also Wt is Ft measurable
by construction. The last property is checked as follows.

EP [Wt | Fs] = EP [Wt −Ws + Ws | Fs]

= EP [Wt −Ws | Fs] + EP [Ws | Fs]

= EP [Wt −Ws] + Ws

= Ws

8.7 lemma. The Brownian Motion is a Markov process

Proof in slides Brownian motion page 15.
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8.1. brownian motion

8.8 fact. The path W(t) is nowhere differentiable.

Some good intuitions are here for non-differentiable.

8.9 definition. (Stopping time) Let (Ω, F ) be a measurable space equipped
with the filtration F = {Ft : t ≥ 0}. A stopping time τ is a function of Ω into
[0,∞]F -measurable such that

{ω ∈ Ω : τ(ω) ≤ t} ∈ Ft

Intuitively, a stopping time tells at each given state ω when to stop and also
given information until time t we should know whether to stop or not thus
have to be Ft measurable.

Consider the first hitting time in continuous time process. It is a stopping
time as shown in discrete time case. It is defined as follows in continuous time
cases.

8.10 definition. Let a > 0. Let’s define

τa(ω) =
{

inf {s ≥ 0 : Ws(ω) = a} if {s ≥ 0 : Ws(ω) = a} , ∅
∞ if {s ≥ 0 : Ws(ω) = a} = ∅

the first time when Brownian motion W reaches point a. Shouldn’t we consider
a as an interval? Ws(ω) is a conts. r.v. how could it takes a single value?

8.11 lemma. The random variable τa is a stopping time.

Proof. Proof of the lemma. We must show that for all t ≥ 0, the event {ω ∈ Ω : τa ≤ t}
belongs to the sigma-algebra Ft. If Q represents the set of all rational numbers,
then

{ω ∈ Ω : τa ≤ t}

=
{
ω ∈ Ω : sup

0≤s≤t
Ws(ω) ≥ a

}

=
∞⋂
n=1

{
ω ∈ Ω : sup

0≤s≤t
Ws(ω) > a − 1

n

}

=
∞⋂
n=1

⋃
r∈Q∩[0,t]

{
ω ∈ Ω : Wr(ω) > a − 1

n

}
︸                          ︷︷                          ︸

Fr therefore ∈Ft︸                                     ︷︷                                     ︸
∈Ft

∈ Ft
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8. brownian motion

where the last equality is obtained from the fact that sup 0≤s≤tWs(ω) > a − 1
n if

and only if there exists at least one rational number r smaller than or equal to
t for which

Wr(ω) > a − 1
n

yet to go through.

8.12 lemma. The stopping time τa is finite almost surely, i.e.

P [τa = ∞] = 0

or equivlently
P({ω : τa(ω) = ∞}) = 0

In short the above lemmas and definitions show the following facts:

• BM will eventually reach every real value a no matter how large a is.

• BM is recurrent. It visits each of its states infinite number of times.

The proof of the theorems and lemmas can be find in slides from pages 27 to
37.

8.2 Multi-dimensional Brownian Motion

8.13 definition. Standard Brownian motion W of dimension n is a family of
random vectors

W =
{
Wt =

(
W(1)

t , . . . , W(n)
t

)⊤
: t ≥ 0

}
where W(1), . . . , W(n) represent independent Brownian motions built on the
filtered probability space (Ω, F ,F,P).

Standard BM consists of independent individual BMs. In practice they
are not independent. We usually use BM to model sources uncertainty of
asset price in financial market. Now we discuss techniques used to obtain a
dependent multi-dimensional BMs. To do so, we consider linear combinations
of those independent BMs.

8.14 lemma. Let Γ =
(
γij

)
i,j∈{1,2,...,n}

is a matrix of constants and W =
(
W(1), . . . , W(n)

)⊤
is a vector made up of independent Brownian motions. For all t, let’s set Bt = Γ Wt.
Then Bt is un random vector of dimension n, the ith component of which is
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8.2. multi-dimensional brownian motion

B(i)
t =

n∑
k=1

γikW
(k)
t . Moreover

Cov
[
B(i)
t , B(j)

t

]
= t

n∑
k=1

γikγjk

Cor
[
B(i)
t , B(j)

t

]
=

n∑
k=1

γikγjk√
n∑

k=1
γ2
ik

√
n∑

k=1
γ2
jk

The proof shown in class is unnecessary and tedious. In matrix notation, we
have

ΣBt
= E

[
Γ (Wt − µµµWt

)(Wt − µµµWt
)′Γ ′)

]
= Γ ΣWt

Γ ′ = tΓ Γ ′

Just remember the fact that

Wt = Wt −W0 ∼ N(0, σ2 = t)

Reversely, if we’ve already known a correlated multi-dimensional BM with
given correlation matrix ρ ∈ Rn×n = (ρij ), we can also restore the independent
BM guaranteed by the following theorem.

8.15 theorem. Let’s now assume that B(1), . . . , B(n) represent correlated Brownian
motions, built on the filtered probability space (Ω, F ,F,P) and that

∀i, j ∈ {1, . . . , n} and ∀t ≥ 0, Cor
[
B(i)
t , B(j)

t

]
= ρij

There exists a matrix A of format n × n such that

• B = AW

• Cor
[
B(i)
t , B(j)

t

]
= ρij

• W is made of independent Brownian motions.

To compute matrix A Recall the fact that the correlation matrix and covari-
ance matrix are both symmetric and s.p.d. The above theorem tells:

• Since Each of the B(i) is a standard BM so

ρij =
Cov(B(i)

t , B(j)
t )

σ
B(i)
t
σ

B(j)
t

=
Cov(B(i)

t , B(j)
t )

√
t
√
t

=⇒ Cov(B(i)
t , B(j)

t ) = tρij

then we have
ΣBt

= tρ
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9. stochastic integral

where ρ is the known correlation matrix.

• Then the theorem says Bt = AWt then by basic algebra

ΣBt
= AΣWt

A′ = tAA′

In short now we have
ΣBt

= tAA′ = tρ

Recall for a p.s.d matrix it admits the eigenvalue decomposition (spectral
decomposition if in addition symmetric). So we could decompose tρ

ΣBt
= tρ = tQΛQ′ = [

√
tQΛ1/2]︸       ︷︷       ︸

U

[
√
tQΛ1/2]′ = tAA′

Thus
A =

1
√
t
U

9 stochastic integral

Here we omitted the discussion about Riemann integral. The stochastic inte-
gral is aspired by the following eqation

It =

t∫
0

XsdWs

where the Xs is the number of shares of an asset we are holding, dWs is the
incremental of a Brownian motion which roughly equivalent to the variation
of share price and thus the It is the profit (or loss) during the horizon (0, t).

9.1 definition. (Basic Stochastic Process) We call X a basic stochastic process
if X admits the following representation:

Xt(ω) = C(ω)I(a,b](t)

where a < b ∈ R and C is a random variable, Fa-measurable and square-
integrable, i.e. EP

[
C2

]
< ∞.
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In orther words

t

Xt(ω)

a b

C(ω) C(ω)

It worth notice that the r.v. Xt is actually Ft measurable. Intuitively, consider
that at time a right after the price is revealed we by C(ω) share of the asset
and hold is during (a, b] and then sell all of them at time b once the price is
revealed. Are we using the sigma algebra generated by the price process as
the filter?

9.2 definition. (Stochastic integral of basic process) The stochastic integral of
X with respect to the Brownian motion is defined as

t∫
0

XsdWs

 (ω)

=C(ω) (Wt∧b(ω) −Wt∧a(ω))

=


0 if 0 ≤ t ≤ a

C(ω) (Wt(ω) −Wa(ω)) if a < t ≤ b
C(ω) (Wb(ω) −Wa(ω)) if b < t.

The quantity

 t∫
0

XsdWs

 (ω) is a r.v. for any t and thus


 t∫

0
XsdWs

 (ω) : t ≥ 0


is a stochastic process. The illustration is as follows.

where the left one shows the evolution of change in price. Notice the Brownian
motion models the change in price ∆P(ω) not the price it self. Page 19 exercise.
Notice the above calculus result is the same as in RS integral taking the integral
w.r.t Ws.
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9. stochastic integral

9.3 lemma. If X is a basic stochastic process, then
t∫

0

XsdWs : t ≥ 0


is a (Ω, F ,F,P)-martingale. Then by the martingale properties

E


t∫

0

XudWu

∣∣∣∣∣ Fs
 =

s∫
0

XudWu

See proof in slides on page 22. Also The properties indicates a constant expec-
tation of the martingale which is

E[It] = E[It |F0] = I0 =

0∫
0

XsdWs = 0

9.4 lemma. Lemma 2. If X and Y are basic processes, then for all t ≥ 0,

EP


t∫

0

XsYsdWs

 = EP




t∫
0

XsdWs




t∫
0

YsdWs




Check the proof in slides.

9.5 definition. (Simple Stochastic process) We call X a simple stochastic
process if X is a finite sum of basic processes :

Xt(ω) =
n∑
i=1

Ci(ω)I(ai ,bi ](t)

9.6 definition. The stochastic integral of X with respect to the Brownian
motion is defined as the sum of the stochastic integrals of the basic processes
which constitute X :

t∫
0

XsdWs =
n∑
i=1

t∫
0

CiI(ai ,bi ](s)dWs

Notice, in practice we compute the results of the integral, we take

Ci = lim
t+−→ai

Xt(ω)

That is the left end point of X (or the right limit). This will be consistent
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with Ito’s integral for general stochastic process. Further more, the stochastic
integral of simple process doesn’t depend on representation (e.g. the choice of
basic process). The integral will give same result which is

n∑
i=1

t∫
0

CiI(ai ,bi ](s)dWs =
m∑
j=1

t∫
0

C̃jI(ãj ,̃bj
](s)dWs

9.7 lemma. Lemma 3. If X is a simple stochastic process, then
t∫

0

XsdWs : t ≥ 0


is a (Ω, F ,F,P)-martingale.

Proof is simple. The integral of basic process is martingale. Then the sum of
martingale process is also martingale.

9.8 lemma. (Ito’s isometry) If X is a simple process, then for all t ≥ 0,

EP


t∫

0

X2
s ds

 = EP




t∫
0

XsdWs


2

Proof see appendix of slides. Using this we can compute the variance of the
process {It : t ≥ 0} which is

VarP


t∫

0

XsdWs


=EP




t∫
0

XsdWs


2 − (EP




t∫
0

XsdWs


︸               ︷︷               ︸

=0,Martingale

)2

=EP


t∫

0

X2
s ds

 =

t∫
0

EP
[
X2
s

]
ds.

It is possible to extend this calculation to other processes X and to establish in
a similar manner a method to calculate the covariance between two stochastic
integrals (see the Appendix).
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9. stochastic integral

Generalization of Ito’s integral for general stochastic process Purpose
is to extend the class of process for which the stochastic integral w.r.t Brownian
motion can be defined. We define a class of stochastic process consisting of
those can be approximated by simple process. The set-up of those process is
as follows.

Consider stochastic process Xt , t ≥ 0 that allows continuous variation over
time and also jumps (not restricted to simple process). We assume the follow-
ing conditions:

(a) {Xt : t ≥ 0} is F adapted

(b) For any T, the r.v. Xt is square integrable which is

E


T∫

0

X2
t dt

 < ∞
Notice the basic and simple process satisfy this property as well.

Then to approximate the process
T∫
0

X2
t dWt we approximate X by simple pro-

cess. To construct such a process first divide [0, T] into n partitions [0, T] =
∪n−1
i=0 (ti , ti+1]. Then we define the sequence

X(n)
t = Xti , t ∈ (ti , ti + 1]

which gives a left continuous simple process. Then we could show ∀t

lim
n−→∞

X(n)
t = Xt

where the distance measure for converges is in the following manner

lim
n→∞

E


T∫

0

(
X(n)
t − Xt

)2
dt

 = 0

Hence the stochastic integral is given by

It =

t∫
0

Xs d Ws = lim
n→∞

t∫
0

X(n)
s d Ws ∀t ∈ [0, T]

The followinig theorem is a summary of the above generalization.

9.9 theorem. ∀T > 0, assume X = {Xt : t ≥ 0} is a Ft-measurable process built
on (ω, F ,F,P) s.t.

E


T∫

0

X2
t dt

 < ∞
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Then the integral

It =

t∫
0

XsdWs

can be computed using

It =

t∫
0

Xs d Ws = lim
n→∞

t∫
0

X(n)
s d Ws ∀t ∈ [0, T]

and It admits the following properties:

(a) Adaptivity: ∀t, It is Ft-measurable

(b) Linearity: It is linear in Xs which is

t∫
0

Xs + YsdWs =

t∫
0

XsdWs +

t∫
0

YsdWs

where both Xs and Ys must hold for square integrable

(c) Martingale: It is a Martingale

(d) Ito isometry:

EP


t∫

0

X2
s ds

 = EP




t∫
0

XsdWs


2

9.10 example. Now consider the Brownian motion and we would like to
compute its integral. We assume the Brownian motion is square integrable
(How to show this?). Then we using a eimple process to approximate Ws and
eventually we arrive at the follwoing conclusion:

9.11 fact. Let Wt be a standard Brownian motion. By using the simple process
to approximate Wt we get

It =

T∫
0

WsdWs =
1
2

W2
T −

1
2

T

where the 1/2 T is called the Ito correction computed using quadratic
variation. Notice using RS integral the result is simply

T∫
0

xdx =
1
2
x2

∣∣∣∣∣T
0

=
1
2
x2
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10. stochastic differential equation

there’s no correction. The detail computation process see written lecture note
9 page 11 - 13. Make up later.

10 stochastic differential equation

Recall that the evolution of a deterministic process through time can be
described using ODE while if the process is stochastic we need to introduce
SDE. To compare for example

dX(t) = µ(t, X(t))dt

dX(t) = µ(t, X(t))dt + σ(t, X(t))dWt

where the part involves Wt is stochastic Brownian motion.

10.1 Convergence Review

Recall X = Y a.s./with probability 1/ a.everywhere means

P(ω ∈ Ω : X(ω) , Y(ω)) = 0

this is equivalent to

∃A ⊆ Ω s.t. P(A) = 1, ∀ω ∈ A X(ω) = Y(ω)

In our context we well dealing with the following zero-measure set

N =: {B ∈ F : P(B) = 0} ⊂ F0

which is the collection of zero-measure events. The following lemma is useful.

10.1 lemma. Let X = Y almost surely and X is Ft measurable. Then Y is also Ft
measurable

Finally we will work on the filtration F

F :=
{
Ft , t ≥ 0 : Ft = σ(Ws : s ∈ [0, t]) ∪ N

}

10.2 Scaled Random walk (s.r.w)

10.2 definition. Consider time horizon [0, T] divided evenly into n sub-
intervals with length ∆t = T/n. Then the s.r.w process is

Wk = Wk−1 +
√
∆tZk , Zk ∼i.i.d Bernoulli((1,-1), p = 1/2) k = 1, 2, · · · , n

Properties for s.r.w easy to shows:
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10.3. short review of ode

(a) The process is equivalent to

Wk = W0 +
k∑

j=1

√
∆tZj

(b) Wk has 0 expectation and variance n∆t = T. Notice that

W0 =a.s. 0

so it has 0 variance.

(c) It has similar properties as Brownian motion which is for any disjoint
intervals (u, v) ∩ (s, t) = ∅

Wv −Wu ⊥ Wt −Ws

and thus covariance of the difference is 0. Further moreE(Wt −Ws) = 0

Var(Wt −Ws) = t − sshouldn’t it be(t − s)∆t

(d) By central limit theorem we have

Wn =
n∑
i=1

√
∆tZi

=
n∑
i=1

√
T
n

Zi

=
√

T


n∑
i=1

Zi

n

√
n

 =
√

T
[

(Zn − 0)
√
n)

1

]
−→d

√
TZ, Z ∼ N(0, 1)

recall that converges in distribution here means

lim
n→∞

P
(

Wn√
T

< z

)
= Φ(z)

so more generally random walk involves sum of i.i.d random variables
not necessarily Bernoulli r.v..

10.3 Short Review of ODE

Consider f (t) to be the price of an asset. Let the behaviour of the price follows

f (t + ∆t) − f (t) = µ∆tf (t)
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10. stochastic differential equation

Why this assumption make sense? The variation over [t, t+∆] should be bigger
if the interval is longer and also, the higher the price at time t the wilder the
price can vary. So it make sence. Then by taking the limit ∆→ 0 we have

f (t)′

f (t)
= µ

Then solve if we have

t∫
0

d
ds

[ln f (s)] ds =

t∫
0

µds =⇒ f (x) = ceµt

eventually given initial condition f (0) = f0 we can solve for c and then the
whole f (x) is known. In short, since the process is deterministic in time t, so
once we modeled the infinitesimal behaviour, we will be able to determine
the price at any time.

10.4 Stochastic differential equation

Approaching SED via ODE. Now we consider that there can be some unpre-
dictable random components of the price. Besides the deterministic trend, we
added a stochastic components so the process becomes

St+∆t − St = µSt∆t + σSt

√
∆tξt

The stochastic part is kind of an analogy of its deterministic counterpart: the
random change is proportional to price St at the beginning with constant σ
while the difference is that the ”variance” part is not as deterministic as

√
∆t

but a r.v. ξt instead. We assume that

ξ ∼i.i.d N(0, 1), ξt ⊥ {Su : u ∈ [0, t]}

The independence actually stress on that fact that utilizing information till t
inclusive (e.g. the observed price of S till t), ξt is not predictable. Notice St is
Ft measurable. If the above process is satisfied we mean that

Pr
[{
ω ∈ Ω : St+∆t(ω) − St(ω) = µSt(ω)∆t + σSt(ω)

√
∆tξt(ω)

}]
= 1

Conditional mean and var Consider the random part only. We have

E
[
σSt

√
∆tξt | σ {Su : u ∈ {0,∆t, . . . , t}}

]
= σSt

√
∆tE [ξt]

= 0

E
[(
σSt

√
∆tξt

)2
| σ {Su : u ∈ {0,∆t, . . . , t}}

]
= σ2S2

t∆tE
[
ξ2
t

]
= σ2S2

t∆t
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10.5. ito’s lemma

Prove is kindergarten level but remember if Xt is Ft measurable then any real
valued function f (Xt) is Ft measurable. So the higher the ∆t or σ the more
dispersed the stochastic value around its conditional mean.

Consider a scaled random walk with incremental Zk , Zk ∼ N(0,1) (e.g.
Wk = Wk−1 + Zk) Then we can rewrite the process as

St+∆t − St = µSt∆t + σSt

√
∆tξt

Instead of considering random walk as shown in the written notes. Consider
that the most important property we have to keep with the ξ is that it is
independent of {Su : u ∈ [0, t]}. Recall

√
∆tξt ∼ N(0,∆t) then we rewrite it by

a Brownian Motion

St+∆t − St = µSt∆t + σSt (Wt+∆t −Wt)

where the increment has exactly the same distribution and properties as ξ and
also notice the whole process is then Ft+∆t-measurable. Finally the SDE we
obtained becomes

dSt = µStdt + σStdWt

This SDE fit a more general form

dXt = b(Xt , t)dt + a(Xt , t)dWt (∗)

where b(Xt , t) is called the drift coefficient and the a(Xt , t) is called the diffusion
coefficient. Further more, recall that the BM Wt is not differentiable. So what
we mean by (∗) is actually the integral form

t∫
0

dXs

︸ ︷︷ ︸
Xt−X0

=

t∫
0

b (Xs, s) ds +

t∫
0

a (Xs, s) dWs

︸             ︷︷             ︸
stochastic integral

The solution to an SDE is a stochastic process while for ODE is a deterministic
process. To solve for SDE, we have to use Ito’s lemma.

10.5 Ito’s Lemma

Ito’s lemma is the counterpart of fundamental theorem of calculus in stochastic
calculus. Ito’s lemma has different manifestation. Several of them are shown
below. Ito’s lemma eventually provides us with a SED that is satisfied by the
given function f (Ws).

10.3 theorem. (Ito’s lemma 1st version) Let W be a Brownian motion built on the
filtered probability space (Ω, F ,F,P) and let f : R→ R be a function, the first two
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10. stochastic differential equation

derivatives of which exist and are continuous. Then ∀0 ≤ t ≤ T,

f (Wt) − f (W0) P− a.s.=

t∫
0

df

dw
(Ws) dWs +

1
2

t∫
0

d2f

dw2 (Ws) ds

In its differential form, equation (8) is written

df (Wt) =
df

dw
(Wt) dWt +

1
2
d2f

dw2 (Wt) dt

which is the SDE that f (Wt) satisfies.

Example see page 32 of slide 11.

10.4 theorem. (Ito’s lemma 2nd version) Let W be a Brownian motion built on
the filtered probability space (Ω, F ,F,P) and let f : R × [0,∞)→ R be a function,
the first and second partial derivatives of which exist and are continuous. Then
∀0 ≤ t ≤ T

f (Wt , t) − f (W0, 0)

=

t∫
0

(
∂f

∂s
(Ws, s) +

1
2
∂2f

∂w2 (Ws, s)
)
ds

+

t∫
0

∂f

∂w
(Ws, s) dWs

In its differential form, we have

df (Wt , t) =
(
∂f

∂t
(Wt , t) +

1
2
∂2f

∂w2 (Wt , t)
)
dt +

∂f

∂w
(Wt , t) dWt

No matter for which type of solution, remember there’s a 1/2 multiplied
by the second derivative of f (Wt , t).

10.5 example. (Black Scholes model) Consider the risky asset price to be

St = S0 exp
[(
µ − σ2

2

)
t + σWt

]
so St = f (Wt , t) where Wt is a Brownian Motion. Using Ito’s lemma, the SDE
that St satisfies easy to find. We directly looking for the differential form and
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10.5. ito’s lemma

then restore the correct integral form which are

dSt = µStdt + σStdWt

St = S0 +

t∫
0

µSndn +

t∫
0

σSndWn

which is the SDE solved by St. Some comments:

* Since Wt ∼ N(0, t) then(
µ − σ2

2

)
t + σWt ∼ N

((
µ − σ2

2

)
t, σ2t

)
and thus St is log-normally distributed. Again, take logarithm of a log-
normal r.v. lead to a normal r.v. so inversely take exponential of a normal
r.v. lead to a log-normal r.v.

* The part S0 is no doubt a stochastic component (e.g. S0 = S0(ω) de-
pending on the states of the world. Further more we can compute the
expectation and variance of St which are

E [St] = E

s0e

(
µ− σ2

2

)
t+σWt


= e

(
µ− σ2

2

)
t
E [S0] E

[
eσWt

]
= e

(
µ− σ2

2

)
t
E [S0] e0∗σ+ 1

2 tσ
2

= eµtE [S0]

The 3rd equality is due to the fact about the moment generating function
of a normal random variable: If X ∼ N(m, v), then

Mt(X) = E
[
exp(mt +

1
2
vt2)

]
Similarly we can check that

E(X2
t ) = E

[
S2

0

]
e2µteσ

2t , Var(St) = E
[
S2

0

]
e2µteσ

2t − E [S0]2 e2µt
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10. stochastic differential equation

10.6 definition. (Ito’s process) An Itô process is defined to be a process X =
{Xt : 0 ≤ t ≤ T} taking its values in R such that:

Xt ≡ X0 +

t∫
0

Ksds +

t∫
0

HsdWs

where K = {Kt : 0 ≤ t ≤ T} and H = {Ht : 0 ≤ t ≤ T} are processes adapted to

the filtration {Ft}, satisfying P
 T∫

0
|Ks| ds < ∞

 = 1 and P
 T∫

0
|Hs|2 ds < ∞

 = 1

10.7 definition. (Total variation of a stoc. process) Let [0, T] be partitioned
into π = {t0 = 0, t1, · · · , tn = T}. Define the norm of a partition π as

∥π∥ = max
k=1,··· ,n

{tk − tk−1}

which is the length of the largest interval. Then the total variation of a stochas-
tic process X = {Xt : t ≥ 0} is defined as

TVX
T = lim

∥π∥→0

n∑
k=1

∣∣∣∣∣Xtk − Xtk−1

∣∣∣∣∣
The total variation is the limit of the sum of increment. It can be viewed as the
length of a sample path {Xt(ω) < t ∈ [0, T]}. It can also be view as the measure
of differentiability: for example, if the function f (t) is differentiable then its
total variation is finite since

TVf
T = lim

∥π∥→0

n∑
i=1

∣∣∣ftk − ftk−1

∣∣∣
= lim
∥z∥→0

n∑
i=1

| f ′t∗k ( tk−1 − tk)︸     ︷︷     ︸
∆tk>0

|

= lim
∥π∥→0

n∑
T=1

∣∣∣∣f ′t∗k ∣∣∣∣∆tk
⩽ lim
∥π∥→0

n∑
i=1

sup
tk

∣∣∣∣f ′t∗k ∣∣∣∣∆tk = lim
∥π∥→0

sup
tk
| f ′t∗k |

n∑
k=1

∆tk︸  ︷︷  ︸
=T

< +∞

the supreme of f ′t∗k
is finite since f is differentiable.
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